USP Theses Collection


close this section of the library Nonlinear programming

View the PDF document On multi-objective linear and non-linear programming
Author: Lakhan, Nirma Narayan
Institution: University of the South Pacific.
Award: M.Sc.
Subject: Linear programming, Nonlinear programming
Date: 2015
Call No.: Pac T 57 .74 .L35 2015
BRN: 1200946
Copyright:Under 10% of this thesis may be copied without the authors written permission

Abstract: Traditionally, most linear and non-linear programming methods have tackled problems under the assumption that a single quantifiable objective either to maximize profit or minimize cost or loss. However, many real life conditions in areas such as health care, scheduling and timetabling, location problems, engineering, statistics, finance, transport, production, project planning, environment and so forth are of linear and non-linear objectives in which posing a single objective is not much practical use. Decision makers may need to solve multiple dependent objectives or criteria in decision makers have increased recognitions that most real life decision problems are characteristically of multiple objectives. These decision making problems with multiple objectives or criteria are generally known as multi-objective optimization or multi-objective programming (MOP) problems. In MOP, several objective functions have to be optimized simultaneously. Further, when the optimum values of several variables are to be obtained, the optimum solution attained for a single objective is not much useful because a solution that is optimum for an objective will generally be far from optimum for others. Thus, MOP is usually conflicting objectives nature or incommensurable objectives. To resolve such conflict, a compromise criterion is sought to reach optimal solutions, in some sense all the objectives are satisfied. The multi-objective problems have been discussed by many authors. They developed several techniques that are available in the literature. A traditional technique that deals with most multi-objective problems is known as goal programming which seeks a compromise solution by setting the relative importance of each objective known as goal. However, there is some situations where there may be no feasible solution satisfying all the goals. These situations certainly advocate the need to search for a technique that considers the optimization of several objectives instead of searching for an optimal solution of each objective. This manuscript deals with the problems of multi-objective linear and non-linear programming in which several objective functions are optimized simultaneously. It develops solution procedures for determining the optimum compromised solution for the problem. The proposed viii multi-objective linear and non-linear programming techniques are illustrated on several numerical examples. Applications of real life situations are also presented. Finally, the results are compared with other techniques to demonstrate the strength of the proposed method.
Disclaimer & Copyright l Contact Us l
© Copyright 1968 - 2018. All Rights Reserved.
USP Library
The University of the South Pacific
Laucala Campus, Suva, Fiji
Tel: +679 323 1000