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Abstract 

 
Stratified Sampling is one of the most widely used sampling techniques as it increases the 

precision of the estimate of the survey variable. On the other hand, calibration estimation is a 

method of adjusting the original design weights to improve survey estimates by using auxiliary 

information such as the known population total (or mean) of the auxiliary variables. A 

calibration estimator uses calibrated weights that are determined to minimize a given distance 

measure to the original design weights while satisfying a set of constraints related to the 

auxiliary information. In this thesis, we propose calibration estimators of population mean in 

stratified sampling design using the auxiliary information available respectively, for univariate 

and multivariate, which incorporates not only the population mean but also the stratum variances 

of the auxiliary variables. The problems of determining the optimum calibrated weights in both 

cases are formulated as Nonlinear Programming Problems (NLPP) that are solved using 

Lagrange multiplier technique. Numerical examples with real and simulated data are presented to 

illustrate the computational details of the solution procedure. Comparison studies are also carried 

out to evaluate the performance and the usefulness of the proposed calibration estimators. The 

results reveal that the proposed calibration estimators are more efficient than the other existing 

calibration estimators of the population mean in stratified sampling as the estimators gives least 

sampling error (SE) and higher gain in relative efficiency (RE) as compared to other estimators. 
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Preface 
 

This thesis entitled “Calibration Approach for Stratified Sampling Design” is submitted to The 

University of the South Pacific, Suva, Fiji to supplicate the Master of Science in Mathematics. 

All of the work presented henceforth is carried out by me in the School of Computing, 

Information and Mathematical Sciences, The University of the South Pacific, Suva, Fiji. 

 

Sampling is an essential part of most research since it is used as means of providing statistical 

data or information on an extensive range of subjects for both research and administrative 

purposes. Various surveys are conducted to develop hypotheses in diverse fields of human 

activities such as economics, operation research, demography, political science, education, 

statistical analysis, medical research, etc. A considerable use of survey is used by governments to 

look into the conditions of their population in terms of unemployment, income, expenditure, 

health, education, etc. 

 

To gain precision in the estimate of a characteristic in sample survey, stratified sampling is a 

widely used sampling technique. Also, when the information on some auxiliary variables is 

available, the precision of the estimates can further be improved, if the auxiliary information is 

efficiently during estimation stage. The ratio estimation, regression estimation and the calibration 

estimation are such techniques that use the auxiliary information. 

 

In this thesis, a research is carried out to improve the precision of the estimates in stratified 

sampling using calibration estimation. The calibration estimation is a technique that uses 

auxiliary information to improve the precision and accuracy of the estimators of population 
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parameter in survey sampling. This technique chooses the adjusted weights that minimize a 

distance between the original weights and the adjusted weights, while satisfying a set of 

constraints related to the auxiliary information. The problem of determining the optimum 

calibrated weights may be formulated as a nonlinear programming problem (NLPP) which can 

be solved using Lagrange Multiplier technique. With the growing significant attention of 

calibration approach, several national statistical agencies are inculcating this technique since it 

leads to consistent estimates, provides an important class of technique for the efficient 

combination of data sources and has computational advantage to calculate estimates. 

 

The use of calibration estimation was first introduced by Deville and Särndal (1992) in survey 

sampling. Since then many authors such as Dupont (1995), Singh et al. (1998, 1999, 2006, 

2011), Singh (2001, 2003 , 2006, 2011, 2012), Farrell and Singh (2002, 2005), Wu and Sitter 

(2001), Sarndal (2007), Estevao and Sarndal (2001, 2003), Kott (2003), Montanari and Ranalli 

(2005), Rueda et al. (2010), Kim (2009, 2010) and many others have contributed to the study of 

calibrated estimation in survey sampling. In stratified random sampling, Singh et al. (1998) 

introduced the calibration approach. Later, many authors such as Tracy et al. (2003), Singh 

(2003), Kim et al. (2007), Rao et al. (2012) proposed different calibration estimators for 

population mean in stratified sampling.  

 

This thesis is an attempt to propose calibration estimators of population mean in stratified 

random sampling incorporating population mean and stratum variances available for single and 

multiple auxiliary variables. Depending upon the availability and the use of single and multiple 

auxiliary variables, the problem of determining optimum weights for the proposed calibrated 

estimators, respectively, are considered two different kinds of optimization problems. The first 
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kind of problem, which is the determination of calibrated weight in stratified random sampling 

when the information on a single auxiliary variable available, is discussed in Chapter 2. 

Whereas, the second kind of problem, which is the determination of calibrated weight in 

stratified random sampling when the information on more than one auxiliary variable is 

discussed in Chapter 3. 

 

This thesis consists of four chapters. Chapter 1 provides an introduction to survey sampling and 

describes the stratified random sampling, the use of auxiliary variable, calibration estimation, 

distance function, nonlinear programming and Lagrange multiplier technique. A brief review of 

the literature and studies about the calibration approach is also presented in this chapter. 

 

In Chapter 2, a calibration estimator of population mean in stratified sampling design is 

proposed when the information on a single auxiliary variable is available. The estimator 

incorporates the information of the population mean but also the stratum variances available for 

the auxiliary variable. Then, the problem of determining optimum calibrated weights is 

formulated as a Nonlinear Programming Problem (NLPP) that seeks minimization of the chi-

square type distance function subject to some calibration constraints. A new calibration 

constraint using the known stratum variances is introduced in our formulation of the NLPP, in 

addition to the constraints on weight and population mean. A solution procedure using Lagrange 

Multiplier technique is discussed to solve the NLPP. Two numerical examples are presented to 

illustrate the application and the computational details of the proposed method. Finally, using 

real and simulated data; a comparison study is also made to investigate the efficiency of the 

proposed calibration estimator.  
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In Chapter 3, a calibration estimator of population mean in stratified sampling design is 

proposed when the information on multiple auxiliary variables is available. The approach of 

determining the calibrated estimator is as similar as discussed in Chapter 2. The problem of 

determining optimum calibrated weights is formulated as an NLPP that seeks the sum of chi-

square type distance of design weight of each auxiliary variable. Then, the formulated NLPP is 

solved using a Lagrange Multiplier technique. Numerical examples and a comparison study are 

presented, respectively, to illustrate the computational details and to investigate the efficiency of 

the proposed calibration estimator.  

 

Finally, Chapter 4 provides a brief conclusion to this thesis. A comprehensive list of references 

is presented in Bibliography at the end of the thesis.    
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Chapter 1 
Introduction 
 

1.1   Sample Surveys 
The word ‘survey’ is used often to describe a method of gathering information on a target 

population. A sample survey is a method of gathering information that selects a sample of 

elements from the target population in order to estimate population attributes.  

Sample surveys are nowadays widely accepted means of providing information on an extensive 

range of subjects for both research and administrative purposes. Numerous surveys are 

conducted to develop, test and refine research hypothesis in such disciplines as sociology, social 

psychology, demography, political science, economics, education and public health. 

Governments make considerable use of surveys to inform them of the conditions of their 

populations in terms of employment and unemployment, income and expenditure, housing 

conditions, education, nutrition, health, travel patterns, and many other subjects. They also 

conduct surveys of organizations such as manufacturers, retail outlets, farms, schools, and 

hospitals. Market researchers carry out surveys to identify market for products, to discover how 

the products are used and how they perform in practice, and to determine customer’s reactions. 

Opinion polls keep track of the popularity of political leaders and their parties and measure 

public opinion on a variety of topical issues. 

Some of the advantages of sample surveys are as follows: 

i) Easy and cost efficient. 

ii) Reduces time needed to collect and process the data and produce results as it requires 
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a smaller scale of operation. 

iii) Convenient data gathering.  

iv) Enables characteristics to be tested which could not otherwise be assessed. 

v) Importantly, a goal in the design of sample surveys is to obtain a sample that is 

representative of the population so that precise inference is made. 

 A variety of sampling techniques have been developed to provide efficient estimates of the 

characteristics. Among the most widely used are simple random sampling, stratified sampling, 

systematic sampling, cluster sampling, multistage sampling and double sampling. Stratified 

random sampling is a common and popular technique among various sampling designs that are 

extensively used in sample surveys. 

 

1.2   Stratified Random Sampling 
Stratified random sampling is a technique which attempts to restrict the possible sample to 

those which are “less extreme” by ensuring that all parts of the population are represented in the 

sample in order to increase the efficiency (that is to decrease the error in the estimation). In 

stratified sampling a population of size N  is first divided into L   disjoint groups of sizes 

1 2, ,..., ,..., ,h LN N N N  respectively. These subgroups, called strata, together they compromise the 

whole population, so that 1 2 3 ... .LN N N N N� � � �  For each stratum a simple random sample of 

pre-specified size, ,hn  is drawn independently from hth  strata, such that 1,2,,...,h L�  such that   

1 2 ... .Ln n n n� � � �  
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In general, stratification of population units depends on the purpose of the survey. For example, 

for an income and expenditure survey of a state, province, and districts may be considered as 

strata. For business surveys on employee size, production and sales, the stratification is usually 

based on industrial classifications. For agricultural surveys, villages and geographical regions 

may compose the strata. 

Some of the advantages of stratified random sampling are as follows: 

i. The overall population total, mean, and other parameters of the entire population can 

be estimated more efficiently, and produces results that are unbiased and accurate. If 

each stratum is internally homogenous, the measurement vary little from one unit to 

another, then a precise estimate of any stratum total or mean can be obtained from a 

small sample in that stratum. 

ii. If the stratification variable were equal to the survey variable, each element of the 

stratum would be a perfect representative of that characteristic. It would be sufficient 

to take a handful element out of each stratum to get the actual distribution of the 

characteristic in the parent population. Therefore, there are frequently savings in time, 

cost and resources needed for sampling the units. 

iii. The estimates for each stratum can be obtained separately. This ensures that all 

important subgroups are represented in the sample. 

iv. It is easier to sample separately from the strata rather than from the entire population 

(especially, if the population is too large). That is, from the standpoint of the agency 

conducting the survey, each subpopulation can be supervised separately. This can 

also allow separate analysis of each stratum, therefore, the differences among the 

strata can be evaluated. 
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v. Stratification increases sampling efficiency if a sub-division of the population is made 

so that the variability between units within a stratum is reduced as compared to the 

variability within the entire population.  

vi. Since the units selected for inclusion within the sample are chosen using probabilistic 

methods, stratified random sampling allows us to make statistical conclusions from 

the data collected that will be considered to be valid. 

1.3   Stratified Estimators  
In estimating a characteristic in a stratified random sampling (SRS), let us define that: 

 N    :        Population Size 

hN   :        Stratum size of the hth stratum; 1,2,..., .h L�  

hjy   :           Value of the jth unit in the hth stratum; 1,2, , hj N� hN, h and 1,2, ,h L� , L, . 

1

hN

h hj
j

Y y
�

�� : Total of the hth stratum. 

1

1 hN

h hj
jh

Y y
N �

� � : Stratum mean. 

h
h

NW
N

� : Stratum weight = Proportion of the units falling in hth stratum. 

1

1
L

h
h

W
�

� ��	 

� �
�  

 �22

1

1
1

hN

h hj h
jh

S y Y
N �

� �
� � : Stratum variance. 

 

1 1

hNL

hj
h j

Y y
� �

��� = Population total. 
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1 1

hNL

hj
h j

y
Y

N
� ��
��

= Population mean. 

hn : Size of SRS from the hth stratum 

h
h

h

nf
N

�  = Sampling fraction in hth stratum. 

1

L

h
h

n n
�

�� = Total sample size. 

1

1 hn

h hj
jh

y y
n �

� � = Sample mean of hth stratum. 

 �22

1

1
1

hn

h hj h
jh

s y y
n �

� �
� �  = Sample variance in hth stratum.  

Let sty be a stratified estimator of the population mean .Y  Then, an unbiased estimate of Y  is 
given by  

                
1

L

st h h
h

y W y
�

��                                                                                                           …(1.1) 

and the variance of sty is given by 

               � 2 2

1

1 1
h h

L

st
h h h

V y W S
n N�

� �
� �	 


� �
�                                                                                    …(1.2)  

An unbiased estimate of the population total Y  is given as  

             ŝt stY N y�                                                                                                                   …(1.3) 

with variance 

                  
 � 2 2 2

1

1 1ˆ
h h

L

st
h h h

V Y N W S
n N�

� �
� �	 


� �
�

                                                                          …(1.4)
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The unbiased estimate of  �stV y  is given as 

                   � 2 2

1

1 1
h h

L

st
h h h

v y W s
n N�

� �
� �	 


� �
�

                                                                                …(1.5)
 

 

1.4  Allocation of Sample Sizes to Different Strata 

In stratified sampling the allocation of the sample to different strata is done by the consideration 

of three factors: 

 
(i) The total number of the units in the stratum i.e. stratum size. 

(ii) The variability within the stratum. 

(iii) The cost of taking observations per sampling unit in the stratum. 

 

1.4.1 Proportional Allocation 
When no information except hN  is available, the allocation of a given sample of size n to 

different strata is done in proportion to their strata sizes, that is, 

 
   h hn N�  

  or h hn n W� �         …(1.6) 

 

1.4.2 Neyman Allocation 
The allocation of samples to different strata, which minimizes  �stV y  for a fixed total sample 

size 
1

L
hh

n n
�

�� , is known as Neyman allocation and is given by: 

 

1

h h
h L

h hh

W Sn n
W S

�

� �
�

       …(1.7) 
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1.4.3 Optimum Allocation 
If hc  be the cost of collecting information from a unit in hth stratum, the allocation of samples to 

different strata, which minimizes  �stV y  for a fixed a fixed cost 
1

L
o h hh

C c c n
�

� �� , is obtained 

as: 

   0

1

h h
h L

h
h h h

h

C c W Sn
cW S c

�

�
� �

�
      …(1.8) 

 
where 0c  is the overhead cost and C is the total cost of the survey. 

 

1.5  Study Variable and Auxiliary Information 
In sample surveys, the variable of interest or the variable about which we want to draw some 

inference is called a study variable. In many surveys, it is possible to collect information about 

some variable(s) in addition to the study variable. This information is known as auxiliary 

information or variable, which is accurately known from many sources and is cheaper to obtain 

than the study variable. Sometimes auxiliary variables are closely related to the study variable. 

The problem of estimating the population parameters in the presence of an auxiliary variable has 

been widely discussed in finite population sampling literature. Out of many ratio, product and 

regression methods of estimation are good examples in this context.  

 
An efficient use of the auxiliary population information provided by one or several auxiliary 

variables at the estimation stage is also a very useful technique in order to obtain more precise 

and reliable estimates. Powerful auxiliary information can produce a successful reduction of the 

bias and the sampling error Khan et al. (2010). Over the last couple of years, a new 
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method, called calibration approach, has appeared to add auxiliary information with the aim to 

obtain new estimators of the population total or mean. 

 

1.6  Calibration Estimation 
Calibration estimation is a method of adjusting the original design weights to improve survey 

estimates by using auxiliary information such as the known population total (or mean) of the 

auxiliary variables. A calibration estimator uses calibrated weights that are determined to 

minimize a given distance measure to the original design weights while satisfying a set of 

constraints related to the auxiliary information.  

 
Calibration is commonly used in survey sampling to increase the precision of the estimators of 

population parameter when auxiliary information is available. The method works by modifying 

the original design weights incorporating the known population characteristics, in practice 

population totals or population means, of the auxiliary variables. Deville and Särndal (1992) first 

used the calibration estimators in survey sampling.  

The basic idea in calibration estimation is to use auxiliary information to obtain a better estimate 

of a population parameter. Consider a population of size N  from which a probability sample of 

size n  is drawn. Let iy  be the value of the study variable y  for the ith population unit and ix  be 

the value of the ith unit of an associated auxiliary variable x . In a simple case, it is assumed that 

population total 
1

N
ii

X x
�

��  is accurately known.  
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If the objective is to estimate the population total 
1

N
ii

Y y
�

�� , Deville and Särndal (1992) used 

the auxiliary information on the known population total ,X  to modify the basic sampling design 

weights, 1 ,i
i

d
�

� that appear in Horvitz and Thompson (1952) estimator   

1 1

ˆ .
n n

i
HT i i

i ii

yY d y
�� �

� �� �        …(1.9) 

Then Deville and Särndal (1992) proposed a new estimator  

1

ˆ
n

DS i i
i

Y w y
�

��                    …(1.10) 

that minimize a chi-square type distance function given by  

2

1

n
i i

i i i

w d
d q�

� ��
	 

� �

�                  …(1.11) 

subject to the calibration constraint  

1

n

i i
i

w x X
�

��                   …(1.12)  

where, iw  is the new calibrated weights. 

Note that iq  are appropriately chosen weights which determines the estimator. In most 

situations, 1.iq �    

Using a Lagrange multiplier technique, the optimum calibrated weights ( iw ) are determined by  

   
2 1

1

n
i i i

i i i in
i

i i i
i

d q xw d X d x
d q x �

�

� �� � �	 

� �

�
�

               …(1.13) 
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Now substituting the value of iw  from (1.13) into (1.10) giving the traditional calibrated 

regression estimator of total as: 

 

2
1 1 1

DS

n n n
i i i i

i i i i
i i ii i i

d q x yY d y X d x
d q x� � �

� �� � �	 

� �

� � �                …(1.14) 

 

1.7  Distance Function  
In calibration estimation discussed in Section 1.6, the optimum calibrated weights ( iw ) are 

determined by formulating an optimization problem that seeks minimization of a distance 

function. Thus, distance functions are often used as error or cost functions to be minimized in an 

optimum problem. Deville and Särndal (1992) discussed about a class of distance functions for 

calibration estimation. 

In stratified sampling design, some distance functions that are frequently used in practice are: 

 
(a) Chi-square type: 

 �2*

1

L
h h

h h h

W W
W Q�

�
� ,                 …(1.15) 

 
where, hQ  are suitability chosen weights which determine the form of estimator.   

 
(b) Mean-squared error: 

 �2*

1

L
h h

h h

W W
LQ�

�
�                  …(1.16) 
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(c) Euclidean: 

 

 �2*

1

L
h h

h h

W W
Q�

�
�                  …(1.17) 

 
(d) Hellinger: 

 

 �2
*

1

L h h

h h

W W

Q�

�
�                  …(1.18) 

 
(e) Minimum entropy: 

 �2* *

1 1
log

L L
h h h h

h hh h h

W W W W
Q Q W� �

� � �
� 	 


� �
� �                …(1.19) 

 

1.8   Nonlinear Programming Problem 
The Nonlinear Programming Problem (NLPP) is a technique used to determine the optimum 

value (maximum or minimum) of a function of several decision variables which are 

subjected to a number of constraints. In an NLPP, some or all the functions either the objective 

function or the left-hand side of the constraints are nonlinear. This technique is widely used to 

solve many decision making problems in areas including economics, education, public health, 

demography, psychology, sociology, political science and many others. For a non-linear 

programming model the main components are the values of the decision variables which 

describe the solutions; the objective function which measures the nature of solutions; the 

constraints which presents the relationships between decision variables.   
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A general Nonlinear Programming Problem (NLPP) can be expressed as follows: 

 
Find the values of the decision variables 1 2, ,..., nx x x  that  

     Maximize (or Minimize)           1 2( , ,..., )nZ f x x x�               …(1.20) 

 Subject to     1 1 2 1( , ,..., )( , , )ng x x x or b� � �  

   2 1 2 2( , ,..., )( , , )ng x x x or b� � �
 

   1 2( , ,..., )( , , )m n mg x x x or b� � �                …(1.21) 

                 and 0; 1,2, , .jx j n� � , .,                 …(1.22) 

The function 1 2( , ,..., )nf x x x  is known as objective function, the functions ig  in (1.21) are the 

constraints in which only one sign among , ,� � �  holds true for each ; ( 1,2,..., )i i m� .  The 

variables ; 1,2, ,jx j n� n,  are called decision variables. 

The problems of calibrated estimation discussed in the thesis are usually non-linear programming 

problems with non-linear objective function and linear/nonlinear constraints. 

 

1.9   Lagrange Multiplier Technique 
Lagrange multiplier technique can be used to solve an NLPP in which all the constraints are 

equality constraints, that is,  

      Maximize (or Minimize)    1 2( , , , ),nZ f x x x� ),n, n                   

                                               Subject to              1 1 2 1(x , ,...., x )ng x b�  
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    2 1 2 2( , x ,..., )ng x x b�
 

      1 2( , ,..., )m n mg x x x b�                         …(1.23) 

To solve (1.23), we associate a multiplier 1�  with the ith constraint in (1.23). Then, the 

Lagrangian function �  is formed as: 

 1 2 , 1 2 1 2 1 2
1

( , ,..., , ,..., ) ( , ,..., ) [ ( , ,..., ) ]
m

n m n i i n i
i

x x x f x x x g x x x b� � � � �
�

� � ��                  …(1.24) 

Then, we attempt to find a stationary point 1 2 , 1 2( , ,..., , ,..., )n mx x x � � �  that maximizes (or 

minimizes) the Lagrangian function 1 2 , 1 2( , ,..., , ,..., )n mx x x� � � � . 

The necessary conditions for the solution of the problem (1.23) are: 

 

1 2 1 2

... ... 0
m mx x x

� � � � � �
� � �

� � � � � �
� � � � � � � �

� � � � � �
                                                                 …(1.25)   

If the objective function 1 2( , ,..., )nf x x x is a concave function in a maximization problem or a 

convex function in a minimization problem, then any point 1 2 1 2( , ,..., , , ,..., )n mx x x � � �  that 

satisfies (1.25) yields an optimum solution 1 2( , ,..., )nx x x . 

 
In this thesis, the problems of determining the optimum weights in calibrated estimation is 

formulated as NLPPs that minimizes a distance, subject to the available calibration constraints. 

The NLPPs are then solved using Lagrange multiplier technique. 
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1.10   Calibration Approach: Review of Literature and Studies 
Calibration estimation, on which the current research is conducted, dates back to 1992. A large 

amount of literature is being devoted to it, gaining significant attention in the field of survey 

methodology and survey practice. It is a technique that uses auxiliary information to improve the 

precision and the accuracy of the estimators of population parameter at survey variable in 

sampling. The technique works by modifying the design weights to improve the survey estimates 

by using the available auxiliary information. The notion of calibration estimators was first 

introduced by Deville and Särndal (1992) in survey sampling as discussed in Section 1.6.  

 
Since then several survey statisticians such as Dupont (1995), Singh et al. (1998, 1999, 2006, 

2011), Singh (2001, 2003 , 2006, 2011, 2012), Farrell and Singh (2002, 2005), Wu and Sitter 

(2001), Sarndal (2007), Estevao and Sarndal (2001, 2003), Kott (2003), Montanari and Ranalli 

(2005), Rueda et al. (2010), Kim (2009, 2010) and many others have contributed to the study of 

calibrated estimation in survey sampling.  

 
In stratified random sampling, Singh et al. (1998) introduced the calibration approach. For the 

combined generalized regression estimator they proposed the calibration estimators by using a 

single auxiliary variable by making assumption that the population consists of L strata with hN  

units in the hth stratum whereby a simple random of size hn  is drawn without replacement such 

that the population size 
1

L

h
h

N N
�

�� and the sample size is 
1

,
L

h
h

n n
�

�� . Let hjy  and hjx  be the 

values of the survey and the auxiliary variables, respectively, associated with ith units of the hth 

stratum. Also, let h
h

NW
N

�  be the stratum weights, h
h

h

nf
N

� the sampling fraction and 
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, , ,h h h hy x Y X  the sample and population means respectively. It is assumed that the population 

mean 
1

L

h h
h

X W x
�

��  is completely known.  

 
If the purpose is to estimate the population mean Y  by using the auxiliary information X , the 

usual estimator of Y  is given by  

1

L

st h h
h

y W y
�

��                    …(1.26) 

Then, Singh et al. (1998) proposed a new estimator given by  

* *

1

L

st h h
h

y W y
�

��                   …(1.27) 

with new weights *
hW  called the calibrated weights which are determined by minimizing the chi-

square (CS) distance function  

 �2*

1

L
h h

h h h

W W
D

W q�

�
��                   …(1.28) 

               

subject to the calibration constraint  

*

1

L

h h
h

W x X
�

�� .                    

Solving the problem stated above using the Lagrange multiplier technique, the optimum 

calibrated weight *
hW  is determined as:  

 �
1

* 2

1

L

h h h h h h h h st
h

W W W Q x W Q x X x
�

�

� �� � �	 

� �
�               …(1.29) 
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Substituting (1.29) in (1.27) the calibrated estimator is obtained as: 

 �*

1

ˆ
L

st h h st
h

y W y X x�
�

� � �� .                …(1.30) 

This leads to Singh et al. (1998) generalized linear regression (GREG) estimator, where 

1
2

1 1

ˆ
L L

h h h h h h h
h h

W Q x y W Q x�
�

� �

� �� 	 

� �

� � . 

 
Later, many authors proposed different calibration estimators for population mean in stratified 

sampling. Tracy et al. (2003) introduced a new calibration equation by making use of second 

order moments of auxiliary variable for estimating the population mean in stratified sampling. 

They proposed the estimator by considering the problem that seeks minimization of the chi-

square (CS) distance function in (1.28) subject to the following two calibration constraints: 

 
*

1 1

L L

h h h h
h h

W x W X
� �

�� �   

* 2 2

1 1

L L

h hx h hx
h h

W s W S
� �

�� �   

where 
 �2

2

1 1

hn
hi h

hx
i h

x x
s

n�

�
�

��   and 
 �2

2

1 1

hN
hi h

hx
i h

X X
S

N�

�
�

�� . 

 
Singh (2003) proposed a calibration estimator of the population mean in stratified sampling by 

introducing a new calibration equation that is sum of calibrated weight be equal to sum of design 

weights, that is, 
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*

1
1

L

h
h

W
�

�� . 

Kim et al. (2007) proposed various calibration approach ratio estimators and derived the 

estimator of the variance of the calibration approach for combined ratio estimators in stratified 

sampling. Rao et al. (2012) proposed a multivariate calibration estimator for the population mean 

using two auxiliary variables in stratified random sampling.  

In this thesis, we propose new calibration estimators of population mean in stratified random 

sampling design using univariate and multivariate auxiliary information, which incorporates not 

only the population mean but also the population variance available for one and more than one 

auxiliary variable respectively. The problem of determining the optimum calibrated weights is 

formulated as a nonlinear programming problem (NLPP) that minimizes the chi-square type 

distance, subject to the available calibration constraints. A solution procedure is developed to 

solve the NLPPs using Lagrange multiplier technique. 
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Chapter 2 

A Calibration Estimator of Population Mean in 
Stratified Random Sampling using a Single Auxiliary 
Variable 
 
 

2.1 Introduction 
In survey sampling, the use of auxiliary information greatly improves the precision of estimates 

of population parameters. Thus, the calibration technique that provides a systematic way to 

incorporate auxiliary information is becoming a widely used procedure of estimation in survey 

sampling. Since calibration is regarded as an important methodological instrument in large scale-

production of statistics, several statisticians usually make large efforts to project surveys that are 

based on the efficient use of all the available auxiliary information, whether it is univariate or 

multivariate.  

 

In stratified random sampling, when the information on a single auxiliary is available, many 

authors proposed different calibration estimators for population mean in stratified sampling. 

They used the mean of the auxiliary variable in their calibrations. Later, Tracy et al. (2003) 

introduced a calibration estimator by incorporating second order moments of the auxiliary 

variable. Singh (2003) also proposed a calibration estimator of the population mean by 

introducing a new calibration equation that is the sum of the calibrated weight which should be 

equal to sum of the design weights.  
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However, in addition to population mean, when the variance of the stratified mean of the 

auxiliary variable is accurately known, the precision of the estimate can further be increased by 

adjusting the design weights. Thus, in this chapter, we attempt to determine calibrated weights 

for estimating population mean in stratified sampling when the stratum variances of the auxiliary 

variable together with the population mean are available. The problem of determining the 

optimum calibrated weights is formulated as a nonlinear programming problem (NLPP) that 

minimizes the chi-square type distance, subject to the available calibration constraints. A 

solution procedure is developed to solve the NLPP using Lagrange multiplier technique. 

 

Two numerical examples with real data are presented to illustrate the computational details of the 

solution procedure to determine the optimum calibrated weights and the optimum calibrated 

estimator. Finally, a comparison study with real and simulated data is carried out to demonstrate 

the practical application and the performance of the proposed estimator. The discoveries reveal 

that the proposed calibration estimator is more efficient than the calibrated estimators proposed 

by Singh et al. (1998), Singh (2003) and Tracy et al. (2003) of the population mean in stratified 

random sampling. 

 

The work presented in this chapter has already been published in the Asia World Congress on 

Computer Science and Engineering (APWC on CSE), 2014, Conference Proceeding.  
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2.2   Formulation of the Problem as a NLPP 
Let the population be divided into L  non-overlapping strata and hn  be the number of units 

drawn by simple random sampling without replacement (SRSWOR) from the hth stratum 

consisting of hN  units, where 
1

L

h
h

n n
�

��  and 
1

L

h
h

N N
�

��  gives the total sample size and the 

population size respectively. For the hth strata, let h hW N N�  be the strata (design) weights, 

and hy  and hY  be the sample and population means, respectively, for the study variable.  

 

Let the estimation of unknown population means Y  be of interest using the information from an 

auxiliary variable .X  Let hiy  and hix  denote the values of the ith population (sampled) unit of 

the study variable ( )Y  and the auxiliary variable ( )X  respectively, in the hth stratum. Assume 

that the population mean 
1

L

h h
h

X W X
�

��  and also the stratum variances  �22

1

1
1

hN

h hi h
ih

S X X
N �

� �
� �  

of the auxiliary variable are accurately known.  

 

The purpose is to propose a calibration estimator of the population mean 
1

L

h h
h

Y W Y
�

��  by using 

the auxiliary information X , which improves the estimates. Let  

            
1

 
L

st h h
h

y W y
�

��  .                                                                                                           …(2.1) 

be the stratified sampling estimator of population mean Y . 

In the presence of an auxiliary information, the new calibration estimator of the population mean 

Y  under stratified sampling given by (see Singh et al. 1998; Singh, 2003; Tracy et al. 2003) 
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* *

1
 ,

L

st h h
h

y W y
�

��                                                  …(2.2) 

with calibrated weights *.hW  When an auxiliary variable X  is available, the new weights *
hW  are 

so chosen such that the sum of the chi-square type distances given by 

            
 �2*

1

L
h h

h h h

W W
W q�

�
�                                                                                                             …(2.3) 

is minimum, subject to the calibration constraints: 

            *

1
1,

L

h
h

W
�

��                                                                                                                    …(2.4) 

*

1

L

h h
h

W x X
�

�� .                                                                                                   ...(2.5) 

Note that 0hq �  in (2.3) are suitability chosen weights which will determine the form of 

estimator.   

 

When the stratum variances ( 2
hS ) of the auxiliary variable are known, we may introduce a new 

calibration equation: 

 * 2 2

1 1

L L

h h h h h h
h h

W d s W d S
� �

�� �  .                                                                                            …(2.6) 

where  �1 1h h hd n N� �  and 2 2

1

1 ( )
1

hn

h hi h
ih

s x x
n �

� �
� � . 

Thus, the problem of determining the optimum calibrated weights *
hW  may be formulated as a 

nonlinear programming problem (NLPP) as given below: 
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Minimize         �  �2*
* * *

1 2
1

, ,...,
L

h h
L

h h h

W W
Z W W W

W q�

�
��  

   subject to *

1
1,

L

h
h

W
�

��                                        

*

1
,

L

h h
h

W x X
�

��         

* 2 2

1 1
,

L L

h h hx h h hx
h h

W d s W d S
� �

�� �       

  and  * 0hW � ; 1,2,...,h L� .                                                   …(2.7) 

 

2.3 Determining Optimum Calibrated Weights 
Ignoring the restriction * 0hW � , we can use Lagrange multiplier technique to solve the NLPP 

(2.7) for determining the optimum values of *
hW , since the constraints are of inequality form. If 

the values *
hW  satisfy the ignored restrictions, the NLPP in (2.7) is solved completely. 

 

Defining 1 2,� �  and 3�  as Lagrange multipliers, the Lagrange function is given as:  

 �2*
* * * 2 2

0 1 1
1 1 1 1 1

 2 1 2  2  .
L L L L L

h h
h h h h h hx h h hx

h h h h hh h

W W
W W x X W d s W d S

W q
� � � �

� � � � �

� � � � � � �� � � � � � �	 
 	 
 	 

� � � � � �

� � � � �             …(2.8)  

 
To find the optimum value of *

hW  the necessary and sufficient conditions for solving *
hW are:  

         
  

 �*
2

0 1 1*

2
2 2 2 0,h h

h h hx
h h h

W W
x d s

W W q
� � � �

��
� � � � �

�
                                                       …(2.9)                         
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*

10

2 1 0,
L

h
h

W�
� �

� � �� � � �	 
� � �
�                                                                                            …(2.10) 

         *

11

2 0,
L

h h
h

W x X�
� �

� � �� � � �	 
� � �
�                                                                                       …(2.11) 

and
   

* 2 2

1 11

2 0.
L L

h h hx h h hx
h h

W d s W d S�
� � �

� � �� � � �	 
� � �
� �                                                                     …(2.12) 

 
From (2.9) we have  

 
          * 2

1 0 1 1( )h h h h h hxW W W q x d s� � �� � � �                                                            …(2.13) 

 
where 0 1,� �  and 1�  will be obtained by using (2.13) and solving a system of nonlinear equations 

obtained by (2.9) - (2.12) using MATHEMATICA. 

 

If * 0hW �  in NLPP (2.7) are satisfied, the above problem is solved completely using the 

Lagrange multiplier technique.  

 

2.4 Numerical Examples 
Example 1: In order to illustrate and to demonstrate the performance of the proposed calibration 

estimator in (2), we use the data obtained from the 2002 and 1997 Agricultural Censuses in Iowa 

State conducted by the National Agricultural Statistics Service, USDA, Washington D.C. 

(source: http://www. agcensus.usda.gov/). The data were used in Khan et al. (2010) in which 

99N �  counties in Iowa State are divided into 4L �  strata. Suppose that an estimate of average 

production of corn harvested in 2002 (Y ) is of interest using single auxiliary variable ,X  which 

is the quantity of corn harvested in 1997 for each county. From the dataset a sample of 28n �  

counties using proportional allocation was selected from four strata as shown in Table 2.1. 
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Table 2.1: Sample selected from agricultural censuses  
Stratum No. Country Corn Yield in 1997 

(X) 
Corn Yield in 2002 

(Y) 

1 
  

Sioux 869342.7 769073 
O'Brien 556474.4 539878.8 

2 
  
  
  
  
  
  
  
  
  

Clay 485421.2 406514.5 
Emmet 423227.3 353411.3 

Hancock 649740.1 598189.3 
Hamilton 735860.1 605422.1 

Cerro Gordo 642734.1 508673.6 
Hardin 679905.5 526762.2 
Floyd 532043.9 473622.5 

Bremer 519584.4 386810.9 
Winneshiek 493184.9 411742 

Clayton 545491.3 535903.6 

3 
  
  
  
  
  
  
  
  
  
  
  
  

Boone 579518.7 532223 
Cedar 645777.1 496703.5 
Clarke 80095.24 73191.5 
Dallas 463447.5 447856.1 
Davis 128108.8 103785.3 
Henry 316577.7 290002.9 
Jones 527055 486803.5 

Marshall 616432.3 453389.9 
Monroe 99940.57 86834.17 

Poweshiek 495272.3 386640.9 
Union 166518.6 121141 

Warren 251910.1 241285.8 
Washington 487297.3 404288.1 

4 
  
 

Pottawattamie 745552.2 735025.4 
Crawford 681493.3 511032.3 

Page 252826.5 302827.1 
 

 
To compute the calibrated weights for the above data, the information needed is summarized in 
Table 2.2. 
 

Table 2.2: Information from agricultural censuses 
h  hN  hW  hn  hx  hd  hy  2

hs  
1 8 0.08081 2 654476 0.375 712909 26265020000 
2 34 0.34343 10 480705 0.071 570719 7848598920 
3 45 0.45455 13 317242 0.055 373689 29862000000 
4 12 0.12121 3 559957 0.250 559957 46720000000 

 
For this population the known population mean of the auxiliary variable is 405654.19X �  and 

the known stratum variances ( 2
hS ) are presented in Table 2.3.  
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Table 2.3: Stratum variances of X 
h 2

hS  
1 21601503189.82 
2 19734615816.65 
3 27129658749.96 
4 17258237358.45 

 
We assume that 1; 1,2,...,4hq h� � . 

Solving the equations (2.10) - (2.13) using MATHEMATICA, the values for  0 1 1,  and � � �  were 

determined. For this example, the values of 0 1 1,  and � � �  are obtained as: 

0 4.66889,� �  

6
1 7.62326 10� �� � �  and 

9
1 2.72456 10 .� �� � �   

 

Finally, equation (2.13) gives the proposed optimum calibrated weights *; 1,...,4hW h �  as 

presented in Column 2 of Table 2.4. 

 
Table 2.4: Calibrated Weights using agricultural censuses data  

h  *
hW  *(1)

hW  *(2)
hW  *(3)

hW  
1 0.01733 0.07555 0.05026 0.07520 
2 0.45245 0.32701 0.31181 0.32657 
3 0.48697 0.44020 0.53497 0.43799 
4 0.04325 0.11499 0.10295 0.11407 

Total 1 0.95774 1 0.95383 
 

Using (2.2) an estimate of the average production of quantity of corn harvested using the 

proposed calibration weights is given by 

 
* *

1

 476769.69.
L

st h h
h

y W y
�

� ��                             …(2.14) 
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Example 2: In this example, we use a tobacco population data of  countries with two 

variables: area (in hectares) and production (in metric tons). The data are obtained from the 

Agriculture Statistics 1999 reported in Singh (2003). The countries were divided into 4L �  

strata and a sample of 28n � countries using proportional allocation was selected as shown in 

Table 2.1. Suppose that an estimate of average production Y  of tobacco crop is of interest 

using a single auxiliary variable X  = area. Assume that X  in different counties are known. To 

compute the univariate calibrated weights in stratified sampling and the value of the estimate of 

Y , we use the same sample units as obtained in Singh (2003).   

 

To compute the calibrated weights for the above data, the information needed is summarized in 

Table 2.5. 

 
Table 2.5: Information from tobacco population 

h  hN  hW  hn  hx  hd  hy  2
hxs  

1 6 0.05660 3 1304.667 0.167 2592 722185.33 

2 6 0.05660 3 2907.5 0.167 26763 839008125 

3 8 0.07547 3 5191.667 0.208 14559.67 74387858.3 

4 10 0.09434 3 21700 0.233 29900 6070000 

5 12 0.11321 4 6808 0.167 12462.5 63572981.3 

6 4 0.03774 2 1800 0.25 3375 1620000 

7 30 0.28302 11 24481.55 0.058 38411.82 1801653230 

8 17 0.16038 6 294809.2 0.108 477961.83 3227740000 

9 10 0.09434 3 6303.667 0.233 7480.33 59939890.3 

10 3 0.02830 2 350 0.167 822.5 125000 

 

For this population the known population mean of the auxiliary variable is 34438.61X �  and the 

known stratum variances ( 2
hS ) are presented in Table 2.6.  
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Table 2.6: Stratum variances of X for tobacco population 

H 2
hS  

1 10899652.70 
2 584984730.00 
3 635958094.84 
4 209817189.17 
5 27842810.52 
6 5876666.67 
7 760238523.44 
8 124004506112.85 
9 8340765245.43 
10 2963333.33 

 

We assume that 1; 1,2,...,10hq h� � . Then, solving the equations (2.10) - (2.13) using 

MATHEMATICA, the values of 0 1 1,  and � � �  are obtained as: 

 
0 0.0442712,� � �  

1 0.0000108073� �   

and  10
1 1.07112 10 .� �� � �   

 
Finally, equation (2.13) gives the proposed optimum calibrated weights *; 1,...,10hW h �  as 

presented in Column 2 of Table 2.7 with the following notations in Columns 3, 4, and 5 

respectively: 

� *(1)
hW  represents Singh et al. (1998) 

� *(1)
hW represents Singh (2003) 

� *(1)
hW  represents Tracy et al. (2003) 
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Table 2.7: Calibrated Weights using tobacco population 

h  *
hW  *(1)

hW  *(2)
hW  *(3)

hW  

1 0.0548916 0.0564722 0.0645010 0.0564719 

2 0.0710314 0.0536658 0.0607508 0.05365402 

3 0.0762381 0.0747725 0.0853052 0.0747708 

4 0.112274 0.0906852 0.1029180 0.09068467 

5 0.116399 0.1118320 0.1275270 0.1118298 

6 0.0368017 0.0376147 0.0429636 0.0376146 

7 0.342226 0.2706490 0.3068770 0.2705246 

8 0.0665353 0.0759668 0.0704579 0.0633362 

9 0.0964492 0.0932724 0.1063840 0.0932766 

10 0.027154 0.0282843 0.0323149 0.0282842 

Total 1 0.89321 1 0.8804474 

 

Using (2.1) an estimate of the average production of the tobacco crop using the proposed 

calibration weights is given by 

* *

1
 53775.78.

L

st h h
h

y W y
�

� ��                             …(2.15) 

 

 

2.5 Comparison Study 
 
In this section, a comparison study is conducted to demonstrate the practical application and the 

performance of the proposed estimator. 

 

The comparison is carried out on the efficiency of the following estimators with the stratified 

sampling estimator under proportional allocation, sty , using the real and simulated data: 

 
1. Singh et al. (1998):   

As discussed in Section 1.10, Singh et al. (1998) proposed calibrated estimator 



34 
 

 �(1) (1)

1

ˆ
L

st h h st
h

y W y X x�
�

� � ��                 …(2.16) 

where 
1

(1) 2

1 1

ˆ
L L

h h h h h h h
h h

W q x y W q x�
�

� �

� �� 	 

� �

� � and the optimum calibrated weight is given by 

 �
1

*(1) 2

1

L

h h h h h h h h st
h

W W W q x W q x X x
�

�

� �� � �	 

� �
�               …(2.17) 

2. Singh (2003):  

The calibrated estimator proposed by Singh (2003) is 

 �(2) (2)

1

ˆ ,
L

st h h st
h

y W y X x�
�

� � ��                …(2.18) 

where  1 1 1 1(2)
2

2

1 1 1

ˆ

L L L L

h h h h h h h h h h h h
h h h h

L L L

h h h h h h h h
h h h

W q x y W q W q y W q x

W q W q x W q x
� � � � �

� � �

� � � ��	 
 	 

� � � ��

� �� � � �
�	 
	 
 	 


� �� � � �

� � � �

� � �
 and the optimum 

calibrated weight is given by 

 

 �1 1*(2)
2

2

1 1 1

L L

h h h h h h h h h h
h h

h h stL L L

h h h h h h h h
h h h

W q x W q W q W q x
W W X x

W q W q x W q x

� �

� � �

� �� � � ��� �	 
 	 
� �� � � �� � �� �
� �� � � �� ��	 
	 
 	 
� �� �� � � � !

� �

� � �
           …(2.19) 

 
3. Tracy et al. (2003): (3)

sty   

Introducing the auxiliary information on second order moment Tracy et al. (2003) 

proposed a calibrated estimator given by 

 �  �(3) * 2 2
1 2

1

ˆ ˆ
L

st st h h h h hx hx
h

y y W y X x S s� �
�

" #� � � � � �$ %�              …(2.20) 
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where 

 �  �4 2 2 2

1 1 1 1 1
1 2

2 4 2

1 1 1

ˆ

L L L L L

h h h h h h h h h hx h hx hx h h h hx
h h h h h

L L L

h h h h h hx h h hx
h h h

W q x y W X x W q s W S s W q x s

W q x W q s W q s
� � � � � �

� � �

� �" #� �� �� � �� �& '	 
	 

� �� �� �$ %� � �

� �� ��	 
� �� � !

� � � � �

� � �
 

and 
 �  �2 2 2 2 2

1 1 1 1 1
2 2

2 4 2

1 1 1

ˆ

L L L L L

h h hx h h hx hx h h h h h h h h h hx
h h h h h

L L L

h h h h h hx h h hx
h h h

W q s y W S s W q x W X x W q x s

W q x W q s W q s
� � � � � �

� � �

� �" #� � �� �& '� �$ %� � �
� �� ��	 
� �� � !

� � � � �

� � �
 

The optimum calibrated weight is given by 

 �  �  �4 2 2 2

1 1 1 1*
2

2 4 2

1 1 1

L L L L

h h h h h h h h hx h hx hx h h hx
h h h h

h h L L L

h h h h h hx h h hx
h h h

W q x W X x W q s W S s W q s
W W

W q x W q s W q s

� � � �

� � �

� �� �� � �� �	 
� �� �� � � �
� �� ��	 
� �� � !

� � � �

� � �
 + 

 
 �  �  �2 2 2 2 2

1 1 1 1
2

2 4 2

1 1 1

L L L L

h h hx h hx hx h h h h h h h h h hx
h h h h

L L L

h h h h h hx h h hx
h h h

W q s W S s W q x W X x W q x s

W q x W q s W q s

� � � �

� � �

� �� �� � �� �	 
� �� �
� �

� �� ��	 
� �� � !

� � � �

� � �
  …(2.21) 

 

4. Proposed estimator:  

 

The proposed calibrated estimator *
sty  and the optimum calibrated weights *

hW  are given 

respectively, in (2.2) and (2.13). 

 

To compare the efficiency of the estimators we have considered the following measures:  

1. The sampling error ( )SE  of an estimator ˆ ,Y  given by ˆ| |,SE Y Y� � where Y  is the true 

average value of the parameter.  
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2. The relative efficiency ( )RE  of an estimator Ŷ  with respect to the stratified sampling 

estimator  �sty  is given by  �  �ˆˆ ˆ/ 100%,stRE v y v Y� � where  �ˆv̂ Y  is the estimated 

variance of the estimators under comparison and   �ˆ stv y  is the estimated variance of the 

estimator sty  under proportional allocation. 

 

The estimated variance for estimators under comparison is obtained by: 

 

� Stratified sampling estimator under proportional allocation: 

     
 �  �22

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

where  h
h

h

nf
N

�  

� Singh et al. (1998):  

     
 �  �  �2 2(1) *(1)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

� Singh (2003):  

       �  �  �2 2(2) *(2)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

� Tracy et al. (2003): 

     
 �  �  �2 2(3) *(3)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �

 
� Proposed estimator: 

      �  �  �2 2* *

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

A. Real Data  
 
Based on the real data used in Examples 1 and 2 in Section 2.4 we compare the performance of 

the proposed estimator with the estimator under proportional allocation and the other three 



37 
 

calibration estimators given in (2.16), (2.18) and (2.20). The calibrated weights for all the 

different methods are presented in Table 2.4 and 2.7. The true average productions  �Y  of the 

corn population in Example 1 and tobacco population in Example 2 are found to be:  

Corn Population:  474973.90Y �  

Tobacco Population: 52444.56Y �   

The Columns 2 and 3 in Table 2.8 show, respectively, the estimated average production  �Ŷ  of 

corn for different estimators and the sampling error of the estimators. Columns 4 and 5 show the 

estimated variance  �ˆv̂ Y and the RE  of the estimators. The results reveal that the proposed 

calibrated estimator is most efficient among all other estimators as it gives least SE  and higher 

gain in .RE  The gain in efficiency of the proposed estimator over the stratified sampling 

estimator is 128.38%.  

Table 2.8: Analysis of corn data  

Estimator Ŷ  
ˆSE Y Y� �   �ˆv̂ Y  RE  

Stratified estimator, sty  491344.93 16371.03 954078803.6 100.0 

Singh et al. (1998), (1)
sty  469372.16 5601.74 874526686.5 109.1 

Singh (2003), (2)
sty  471351.22 3622.68 850031397.0 112.2 

Tracy et al. (2003), (3)
sty  467536.93 7436.97 865022433.4 110.3 

Proposed estimator, *
sty  476769.69 1795.79 743156887.2 128.4 

 

Similarly the results for the tobacco data presented in Table 2.9, reveal that the proposed 

calibrated estimator is most efficient among all other estimators as it produces least SE  and 
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higher RE . The gain in efficiency of the proposed estimator over the stratified sampling 

estimator is 545.14%.  

 

Table 2.9: Analysis of tobacco population data  

Estimator Ŷ  ˆSE Y Y� �   �ˆv̂ Y  RE  

Stratified estimator, sty  95373.90 42929.34 2822731121.0 100.0 

Singh et al. (1998), (1)
sty  54329.76 1885.20 650863727.5 433.69 

Singh (2003), (2)
sty  54132.89 1688.33 569781129.3 495.41 

Tracy et al. (2003), (3)
sty  48287.10 4156.85 609479471.9 463.14 

Proposed estimator, *
sty  53775.78 1331.22 517799741.5 545.14 

 

 

B. Simulated Data  
 

In this subsection the performance of the proposed estimator was compared with the other 

calibration estimators using a simulated data. The data for the auxiliary variable ( )X  was 

randomly generated using the R software for a normal population of size N = 1000 with a mean 

of 50 and a standard deviation of 5.2. Then, the data for the survey variable ( )Y  was generated 

from X  using the linear function of i iY AX B� � , where the values of the coefficients A  and B

are 1.2 and 701.0, respectively.  

 

This simulated population is divided into 4L �  strata. Suppose that an estimate of population 

mean Y  is of interest using single auxiliary variable, X . Using proportional allocation a sample 

of 100n �  was selected from the four strata. To compute the calibrated weights, the information 

needed is summarized in Table 2.10 below.     
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Table 2.10: Information from simulated data 

h  hN  hW  hn  hx  hd  hy  2
hs  

1 319 0.319 27 43.95871 0.034 753.75050 7.32511 

2 362 0.362 25 49.86476 0.037 761.03770 0.07830 

3 220 0.220 21 54.45950 0.043 766.32650 0.07703 

4 99 0.099 27 59.09469 0.027 771.90000 0.07709 

 

The known mean of the auxiliary variable for this population is found to be 49.89973X �  and 

the stratum variances are found as shown in Table 2.11. 

 
 

Table 2.11: Stratum variances of X for simulated data 

H 2
hS  

1 7.30214979 

2 2.14808052 

3 1.78813814 

4 2.87378679 

 

 

Then, solving equations (2.10)-(2.13) using MATHEMATICA, 0 112.9801, 0.239806,� �� � �  

and 1 12.4334� � . Hence, equation (2.13) gives the optimum calibrated weight of the proposed 

estimator, which is presented in Column 2 in Table 2.12. The last three columns of the table 

show the weights of other three calibrated estimators. 
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Table 2.12: Calibrated Weights using simulated data 

h  *
hW  *(1)

hW  *(2)
hW  *(3)

hW  

1 0.52892 0.31897 0.31943 0.31900 

2 0.00500 0.36196 0.36200 0.36195 

3 0.24658 0.21997 0.21977 0.21996 

4 0.21949 0.09899 0.09870 0.09898 

Total 1 0.99989 1 0.99989 

 

Using (2.2) the proposed calibration estimator is obtained as:  

                         * *

1
 760.87151.

L

st h h
h

y W y
�

� ��                                                                         …(2.22) 

Moreover, the true population mean of the simulated data is 760.87968.Y �  Table 2.13 presents 

the results for the simulated data.  It reveals the similar results as found in the real data. Thus, the 

proposed calibrated estimator is most efficient as compared to other estimators and the gain in 

efficiency of the proposed estimator over the stratified estimator is 386.20%.  

 

Table 2.13: Analysis of simulated data  
Estimator Ŷ  ˆSE Y Y� �   �ˆv̂ Y  RE  

Stratified estimator, sty  760.95199 0.07231 45844670263.9 100 

Singh et al. (1998), (1)
sty  760.86745 0.01222 45835552384.3 100.02 

Singh (2003), (2)
sty  760.86902 0.01065 45745087574.3 100.22 

Tracy et al. (2003), (3)
sty  760.91479 0.03511 44382712304.2 103.29 

Proposed estimator, *
sty  760.87151 0.00817 11870824590.0 386.20 
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Chapter 3 
 
A Calibration Estimator of Population Mean in 
Stratified Random Sampling using Multiple Auxiliary 
Variable 
 
 

3.1 Introduction 
In addition to population mean, when the variance of the stratified mean of the auxiliary variable 

is accurately known like in Chapter 2, we proposed a calibrated estimator in stratified sampling 

when the information is available for a single auxiliary variable. 

 

In surveys, when the information on more than one auxiliary information is available, the 

precision of the estimate can further be increased by adjusting the design weights based on all the 

auxiliary information. In this chapter, we propose new calibration estimator of population mean 

in stratified random sampling design with the aid of several auxiliary information, in particular, 

the variance of stratified mean together with the population mean of the auxiliary variables for 

improving the precision of the estimate. Therefore, the proposed estimator incorporates not only 

the population mean but also the variance of stratified mean available for the multiple auxiliary 

variables. The problem of determining the optimum calibrated weights is formulated as a 

nonlinear programming problem (NLPP) that seeks minimization of the sum of chi-square type 

distance of design weight of each auxiliary variable, subject to some calibration constraints on 

design weights, means and variances. A solution procedure is developed to solve the NLPP using 
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Lagrange multiplier technique. The computational details of the procedure are illustrated in the 

presence of two auxiliary variables.  

 

Numerical examples with real and simulated data are presented to demonstrate the practical 

application of the proposed estimator. To compare the efficiency gain of the proposed 

multivariate calibration estimator with the other existing calibration estimators a comparison 

study is carried out. The study reveals that the proposed multivariate calibrated estimator is more 

efficient than other estimators. 

 

3.2    A General Formulation of the Problem as a NLPP 
Consider that a finite population U  of size N  is stratified into L  strata 1,..., LU U  containing 

hN  units in hth stratum ( 1,2,..., .h L� ) such that 
1

L
hh

N N
�

��  and h hW N N�  be the strata 

weights. A simple random sample of size hn  is drawn without replacement from the hth stratum 

such that 
1

L
hh

n n
�

�� .  

Let Y  be the study variable and the estimation of unknown population means Y  be of interest 

using the information from p auxiliary variables jX , pj .,..,2,1� . Let ihy  and ihjx  denote the 

observed values of the ith population (sampled) unit of the study variable (Y ) and the jth 

auxiliary variable ( jX ) respectively, in the hth stratum. For the hth strata, 
1

1 hn
h ihi

h

y y
n �

� �  is the 

sample mean of the study variable. Assume that population means 
1

L
j h hjh

X W X
�

��  and the 

population variances  �2
2

1

1
1

hN
hj ihj hji

h

S x X
N �

� �
� �   of all the p  auxiliary variables are 
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accurately known, where hjX  is the population mean of  jth auxiliary variable in hth stratum and.  

 

The purpose is to propose a calibration estimator of the population mean 
1

L

h h
h

Y W Y
�

��  by using 

the information from p  auxiliary variables ; 1,2,..., .jX j p�  The classical unbiased estimator of 

the population mean is given by  

 

1
 

L

st h h
h

y W y
�

��                                           …(3.1) 

 
In the presence of p auxiliary information, the new calibrated estimate of the population mean 

Y  under stratified sampling given by (see Singh et al. (1998); Singh, 2003; Tracy et al. 2003) 

 

  * *

1
 

L

st h h
h

y W y
�

��                                      …(3.2) 

 
with new weights *

hW . When more than one auxiliary variables ; 1,2,...,jX j p�  are available, 

the new weights *
hW  are so chosen such that the sum of chi-square type distance of design 

weight of each auxiliary variable given by 

 

  
 � 2*

1 1

p L
h h

j h h hj

W W
W q� �

�
��                                     …(3.3) 

 
is minimum, subject to the calibration constraints 
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*
1

1L
hh

W
�

�� ,                                                                                                   …(3.4)                         

*

1
; 1,2,...,

L

h hj j
h

W x X j p
�

� ��  .                                        …(3.5)                         

 

Note that 0hjq �  in (3.3) are suitability chosen weights which will determine the form of 

estimator.   

 

When the variances ( 2
hjS ) of the auxiliary variable are known, we may introduce new calibration 

equations: 

 
* 2 2

1 1
; 1,2,...,

L L

h h hj h h hj
h h

W d s W d S j p
� �

� �� �                                        …(3.6)                         

where                            2 2

1

1 ( )
1

hn

hj ihj hj
ih

s x x
n �

� �
� � ,

 

                                    �1 1h h hd n N� � . 

One of the challenges in calibration approach of estimation is that sometimes the calibrated 

weights do not satisfy the desired constraint of weights being non-negative. To avoid such 

situation one needs to impose the non-negativity restrictions: 

 

* 0hW � ; 1,2,...., .h L�                    …(3.7)                         

Thus, the problem of determining the optimum calibrated weights *
hW  may be formulated as a 

nonlinear programming problem (NLPP) as given below: 
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Minimize  �
* 2

* * *
1 2

1

( ), ,...,
L

h h
L

h h h

W WZ W W W
W Q�

�
��

subject to 

*

1
1,

L

h
h

W
�

��                                        

*

1
; 1,2,...,

L

h hj j
h

W x X j p
�

� �� ,

* 2 2

1 1
; 1,2,..., ,

L L

h h hj h h hj
h h

W d s W d S j p
� �

� �� �

and             * 0hW � ; 1,2,....,h L�  .                            …(3.8) 

           where            
1

1

1p

h
j hj

Q
q

�

�

� �
� 	 
	 

� �
� .

3.3 Determining Optimal Calibrated Weights 
Ignoring the restrictions * 0hW � ,  we can use Lagrange multiplier technique to solve the NLPP 

(3.8) when information on two auxiliary variables ;( 1,2)jX j �  is available for determining the 

optimum values of *
hW , since the constraints are inequality form. If the values *

hW  satisfy the 

ignored restrictions, the NLPP in (3.8) is solved completely. 

To illustrate the solution procedure using a Lagrange multiplier technique, let us consider that 

the information on two auxiliary variables ;( 1,2)jX j �  is available. Then, ignoring the 

restrictions * 0hW � , the NLPP (3.8) can be expressed as: 
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Minimize  �
* 2

* * *
1 2

1

( ), ,...,
L

h h
L

h h h

W WZ W W W
W Q�

�
��  

subject to *

1
1,

L

h
h

W
�

��                                        

*
1 1

1
,

L

h h
h

W x X
�

��   

*
2 2

1
,

L

h h
h

W x X
�

��         

* 2 2
1 1

1 1
,

L L

h h hx h h hx
h h

W d s W d S
� �

�� �   

* 2 2
2 2

1 1
,

L L

h h hx h h hx
h h

W d s W d S
� �

�� �      

Defining 0 1 2 1 2, , , ,� � � � �  as Lagrange multipliers, the Lagrange function is given as:  

  

 �2*
* * *

0 1 1 1 2 2 2
1 1 1 1

* 2 2 * 2 2
1 1 1 2 2 2

1 1 1 1

 2 1 2  2

2 2 

L L L L
h h

h h h h h
h h h hh h

L L L L

h h h h h h h h h h h h
h h h h

W W
W W x X W x X

W Q

W d s W d S W d s W d S

� � � �

� �

� � � �

� � � �

� � � � � � �� � � � � � �	 
 	 
 	 

� � � � � �

� � � �� � � �	 
 	 

� � � �

� � � �

� � � �
            …(3.9)

 

The necessary and sufficient conditions for solving optimum values of *
hW are:  

 �*
2 2

0 1 1 2 2 1 1 2 2*

2
2 2 2 2 2 0h h

h h h h h h
h h h

W W
x x d s d s

W W Q
� � � � � �

��
� � � � � � �

�
                             …(3.10)                         

*

10

2 1 0
L

h
h

W�
� �

� � �� � � �	 
� � �
�                                                                                                      …(3.11) 

 *
1 1

11

2 0
L

h h
h

W x X�
� �

� � �� � � �	 
� � �
�                                                                                               …(3.12) 

*
2 2

12

2 0
L

h h
h

W x X�
� �

� � �� � � �	 
� � �
�

                     
(3.13) 
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* 2 * 2
1 1

1 11

2 0
L L

h h h h h h
h h

W d s W d S�
� � �

� � �� � � �	 
� � �
� �

                                                                             …(3.14)
 

* 2 * 2
2 2

1 12

2 0
L L

h h h h h h
h h

W d s W d S�
� � �

� � �� � � �	 
� � �
� �

                                                                            …(3.15)
 

From (3.10) we have 

 �* 2 2
0 1 1 2 2 1 1 2 2h h h h h h h hx h hxW W W Q x x d s d s� � � � �� � � � � �                              …(3.16)                         

which could be generalized for p auxiliary variables as: 

 �* 2 2 2
0 1 1 2 2 1 1 2 2... ...h h h h h h p hp h hx h hx p h hpW W W Q x x x d s d s d s� � � � � � �� � � � � � � � � �  

where 0 1 2 1, , ,� � � �  and 2�  will be obtained by using (3.16) and solving a system of nonlinear 

equations obtained by (3.10)-(3.15) using MATHEMATICA.  

 

If the calibrated weights *
hW  obtained by (3.16) are non-negative then the NLPP (3.8) is solved 

completely. 

 

3.4 Numerical Example  
In order to illustrate and to demonstrate the performance of the proposed multivariate calibration 

estimator, we use the tobacco population data discussed in Example 2 in Chapter 2. The 

population consists of data of 106N �  counties with three variables: area (in hectares), yield (in 

metric tons) and production (in metric tons). The counties were divided into 10L �  strata and a 

sample of 40n �  counties using proportional allocation was selected as shown in Table 3.1. 

Suppose that an estimate of average production  �Y   of tobacco crop is of interest using the two 

auxiliary variables 1X area�  and 2 .X yield�  Assume that 1X  and 2X   in different counties are 

known. To compute the multivariate calibrated weights in stratified sampling and the value of 

the estimate of  ,Y  we use the same sample units as obtained in Singh (2003).   
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Table 3.1: Sample selected from agricultural censuses with two auxiliary variables 
Stratum No Unit Area ( 1X ) Yield ( 2X ) Production (Y) 

  2 580 1.79 1038 
1 5 2240 2.03 4550 

  6 1094 2 2188 
  1 5900 0.63 37000 
2 2 27050 1.51 40950 

  4 1175 1.99 2339 
  1 105 1.9 199 
3 2 320 3.69 1180 

  8 15150 2.79 42300 
  2 24000 0.63 15000 
4 7 22000 1.36 30000 

  8 19100 2.34 44700 
  2 4304 0.26 1100 
5 7 18600 2.05 38150 
  9 3228 2.48 8000 

  10 1100 2.36 2600 

6 1 2700 1.96 5300 
2 900 1.61 1450 

7 

1 3950 0.99 3900 
5 3700 1.11 4110 
6 3400 1.62 5500 
7 750 0.87 650 
11 10000 0.26 2600 
12 8805 2.51 22120 
15 116700 1.22 142300 
20 10000 2.1 21000 
22 103110 2.06 212050 
26 4000 0.5 2000 
30 4882 1.29 6300 

8 

2 36000 1.22 44000 
5 1445000 1.75 2524500 
6 206625 0.85 175631 
10 25730 2.02 52040 
11 4000 0.75 3000 
15 51500 1.33 68600 

9 
1 161 1.5 241 
5 3750 1.33 5000 
7 15000 1.15 17200 

10 2 100 0.95 95 
3 600 2.58 1550 

 

To compute the calibrated weights for the above data, the information needed is summarized in 

Table 3.2. 
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Table 3.2: Information from tobacco population with two auxiliary variables 
h  hN  hW  hn  1hx  2hx   hd  hy  2

1hs  2
2hs  

1 6 0.05660 3 1304.667 1.940  0.167 2592 722185.33 0.0171 

2 6 0.05660 3 2907.5 1.377  0.167 26763 839008125 0.475733 

3 8 0.07547 3 5191.667 2.793  0.208 14559.67 74387858.3 0.801033 

4 10 0.09434 3 21700 1.443  0.233 29900 6070000 0.736233 

5 12 0.11321 4 6808 1.788  0.167 12462.5 63572981.3 1.06983 

6 4 0.03774 2 1800 1.785  0.25 3375 1620000 0.061250 

7 30 0.28302 11 24481.55 1.323  0.058 38411.82 1801653230 0.48245 

8 17 0.16038 6 294809.2 1.320  0.108 477961.83 3227740000 0.24616 

9 10 0.09434 3 6303.667 1.327  0.233 7480.33 59939890.3 0.03063 

10 3 0.02830 2 350 1.765  0.167 822.5 125000 1.32845 

 

Assuming that 1,hQ �  the known population means ( jX ) of the auxiliary variables are obtained as:  

1 34438.61X �  and 2 1.56.X �   

The known population stratum variances ( 2
hjS ) of the auxiliary variables are presented in Table 3.3.  

 

Table 3.3: Stratum variances of 1X  and 2X  

H 2
1hS  2

2hS  
1 10899652.70 0.0268 
2 584984730.00 0.2181 
3 635958094.84 0.3470 
4 209817189.17 0.2346 
5 27842810.52 0.5821 
6 5876666.67 0.1531 
7 760238523.44 0.3439 
8 124004506112.85 0.3786 
9 8340765245.43 2.0183 
10 2963333.33 0.9746 
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Solving the equations (3.10) - (3.15) using MATHEMATICA, the values for   

0 1 2 1 2, , ,   and � � � � �  were determined. For this example, the values of 0 1 2 1 2, , ,   and � � � � �  are 

obtained as: 0 0.626375,� �  6
1 2.63547 10 ,� �� �  2 0.501509,� � �  11

1 4.04381 10 ,� �� � �  

2 3.11699.� �   

Finally, equation (3.16) gives the proposed optimum calibrated weights *; 1,...,10hW h �  as 

presented in Column 2 of Table 3.4 with the following notations in Columns 3, 4, 5 and 6 

respectively: 

� *(1)
hW  represents Singh et al. (1998) 

� *(2)
hW represents Singh (2003) 

� *(3)
hW  represents Tracy et al. (2003) 

� *(4)
hW  author’s univariate. 

               Table 3.4: Calibrated weights using tobacco population with two auxiliary variables 
h  *

hW  
*(1)

hW  *(2)
hW  *(3)

hW  *(4)
hW  

1 0.03768 0.0548916 0.0564722 0.0645010 0.0575757 

2 0.07101 0.0710314 0.0536658 0.0607508 0.0776931 

3 0.05720 0.0762381 0.0747725 0.0853052 0.0805716 

4 0.14098 0.112274 0.0906852 0.1029180 0.121396 

5 0.14766 0.116399 0.1118320 0.1275270 0.123299 

6 0.02957 0.0368017 0.0376147 0.0429636 0.0386372 

7 0.31456 0.342226 0.2706490 0.3068770 0.367502 

8 0.06649 0.0665353 0.0759668 0.0704579 0.0627263 

9 0.09428 0.0964492 0.0932724 0.1063840 0.202123 

10 0.04057 0.027154 0.0282843 0.0323149 0.0164 

Total 1 1 0.89321 1 1.14792 
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Using (3.2) an estimate of the average production of the tobacco crop using the proposed 

calibration weights is given by 

* *

1
 53585.53.

L

st h h
h

y W y
�

� ��                             …(3.17) 

3.5 Comparison Study 
In this section, using the real and simulated data, a comparison study is carried out on the 

efficiency of the proposed multivariate calibrated estimator  �*
sty  with following estimators as 

discussed in Chapter 2, which are based on the single auxiliary variable: 

 

1. Singh et al. (1998) estimator, (1)
sty , given by (2.16) 

2. Singh (2003) estimator, (2)
sty , given by (2.18)  

3. Tracy et al. (2003) estimator, (3)
sty , given by (2.20) 

4. Author’s univariate estimator, (4)
sty , given by (2.13) proposed in Chapter 2.   

To compare the efficiency of the estimators we have considered the following measures as 

discussed in Section 2.5, Chapter 2:  

1. The sampling error, ˆ| |,SE Y Y� �  

2. The relative efficiency,  �  �ˆˆ ˆ/ 100%,stRE v y v Y� �  

where  �ˆv̂ Y  is the estimated variance of the estimators under comparison and   �ˆ stv y  is the 

estimated variance of the estimator sty  under proportional allocation. 

 

The estimated variance for estimators under comparison is obtained by: 
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� Stratified sampling estimator under proportional allocation: 

     
 �  �22

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

 

� Singh et al. (1998):  

     
 �  �  �2 2(1) *(1)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

� Singh (2003):  

       �  �  �2 2(2) *(2)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

� Tracy et al. (2003): 

     
 �  �  �2 2(3) *(3)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �

 

� Author’s univariate estimator proposed in (2.13): 

      �  �  �2 2(4) *(4)

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �  

� Proposed multivariate estimator: 

      �  �  �2 2* *

1 1

1 1ˆ .
1

hnL
h

st h hi h
h ih h

fv y W y y
n n� �

� ��
� � �	 
 �� �
� �

 

A. Real Data  
Based on the real data used in Section 3.4 we compare the performance of the proposed 

estimator obtained based on the information of the two auxiliary variables ( 1X = Area and 2X = 

Yield) with the estimator under proportional allocation and the other calibration estimators 
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obtained based on the information of the single auxiliary variable ( 1X = Area) as mentioned 

above. Table 3.4 in Section 3.4 presents the calibrated weights for all the different methods. As 

discussed earlier the true average production  �Y  of the tobacco crop for this population is found 

to be: 52444.56.Y �   

In Table 3.5, the Columns 2 and 3 show, respectively, the estimated average production  �Ŷ  of 

tobacco for different estimators and the sampling error of the estimators. Whereas, the Columns 

4 and 5 show the estimated variance  �ˆv̂ Y and the RE  of the estimators. The results reveal that 

the proposed multivariate calibrated estimator further improves the result as compared to the 

results of all univariate calibrated estimators. The gain in efficiency of the proposed estimator 

over the stratified sampling estimator is 550.96%.  

 

Table 3.5: Analysis of tobacco population data  

Estimator Ŷ  
ˆSE Y Y� �   �ˆv̂ Y  RE  

Stratified estimator, sty  95373.90 42929.34 2822731121.0 100.0 

Singh et al. (1998), (1)
sty  54329.76 1885.20 650863727.5 433.69 

Singh (2003), (2)
sty  54132.89 1688.33 569781129.3 495.41 

Tracy et al. (2003), (3)
sty  54321.02 1876.46 609889505.3 462.83 

Proposed univariate estimator, (4)
sty  53775.78 1331.22 517799741.5 545.14 

Proposed multivariate estimator, *
sty  53585.53 1140.97 512333228.2 550.96 
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B. Simulated Data  
In this subsection the performance of the proposed multivariate estimator was compared with the 

other calibration estimators using a simulated data. The data for the auxiliary variable 1( )X  and 

2( )X was randomly generated using the R software for a normal population of size N = 1000 

with a mean of 50 and a standard deviation of 5.2. Then, the data for the survey variable ( )Y  was 

generated from X  using the linear function of i iY AX B� � , where the values of the coefficients 

A  and B are 1.2 and 701.0, respectively.  

 

This simulated population is divided into 4L �  strata. Suppose that an estimate of population 

mean Y  is of interest using two auxiliary variables, 1X  and 2.X  Using proportional allocation a 

sample of 100n �  was selected from the four strata. To compute the calibrated weights, the 

information needed is summarized in Table 3.6 below.     

Table 3.6: Information from simulated data 

h  hN  hW  hn  1hx  2hx  hd  hy  2
1hs  2

2hs  

1 319 0.319 27 43.95871 122.36840 0.034 753.75050 7.32511 33.15712 

2 362 0.362 25 49.86476 125.31160 0.037 761.03770 0.07830 29.64958 

3 220 0.220 21 54.45950 127.96450 0.043 766.32650 0.07703 32.95809 

4 99 0.099 27 59.09469 122.41080 0.027 771.90000 0.07709 26.40835 

 

The known means ( jX ) of the auxiliary variables for this population are found to be 

1 49.89973X �  and 2 124.77390X � ,  and the known stratum variances ( 2
hjS ) are given as shown 

in Table 3.7. 
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Table 3.7: Stratum variances of 1X  and 2X  for simulated data 

H 2
1hS  2

2hS  
1 7.3021 938.4589 
2 2.1481 851.6338 
3 1.7881 784.3973 
4 2.8738 914.7062 

 

Then, solving equations (3.10)-(3.15) using  MATHEMATICA the Lagrange multipliers are 

obtained as: 

0 1 2 1 214.32942, 0.00330, 0.12444, 1.49439, 0.000146.� � � � �� � � � � � � �  

 

Hence, equation (3.16) gives the optimum calibrated weight of the proposed estimator, which is 

presented in Column 2 in Table 3.8. The last three columns of the table show the weights of 

other calibrated estimators. 

Table 3.8: Calibrated Weights using simulated data 

h  *
hW  

*(1)
hW  *(2)

hW  *(3)
hW  *(4)

hW  

1 0.52928 0.52892 0.31897 0.31943 0.31900 

2 0.00400 0.00500 0.36196 0.36200 0.36195 

3 0.24683 0.24658 0.21997 0.21977 0.21996 

4 0.21990 0.21949 0.09899 0.09870 0.09898 

Total 1 1 0.99989 1 0.99989 

 

Using (2) the proposed calibration estimator is obtained as:  

                         * *

1
 760.88240.

L

st h h
h

y W y
�

� ��                                                                         …(3.18) 
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Moreover, as discussed in Chapter 2, the true population mean of the simulated data 

760.87968.Y �  Table 3.9 presents the results for the simulated data.  It reveals the similar results 

as found in the real data. Thus, the proposed multivariate calibrated estimator is most efficient as 

compared to other estimators and the gain in efficiency of the proposed estimator over the 

stratified estimator is 386.85%. 

Table 3.9: Analysis of simulated data  

Estimator Ŷ  
ˆSE Y Y� �   �ˆv̂ Y  RE  

Stratified estimator, sty  760.95199 0.07231 45844670263.9 100 

Singh et al. (1998), (1)
sty  760.86745 0.01222 45835552384.3 100.02 

Singh (2003), (2)
sty  760.86902 0.01065 45745087574.3 100.22 

Tracy et al. (2003), (3)
sty  760.86787 0.01181 45832943300.4 100.03 

Proposed univariate estimator, (4)
sty  760.87151 0.00817 11870824590.0 386.20 

Proposed multivariate estimator, *
sty  760.88240 0.00272 11850624683.1 386.85 
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Chapter 4 
 

Conclusion 
 
 
 

In surveys, the surveyors are often interested in the greater precision of the estimate of the 

characteristics that involves a continuous research carried out by the researchers to improve the 

precision in the estimates. Stratified random sampling is one of the most systematic and 

frequently used sampling techniques in surveys to estimate a population statistic. Moreover, the 

precision of the estimate can further be improved, if the auxiliary information of the study 

variable available is used. Thus, calibration estimation that incorporates the auxiliary information 

is a widely used technique in survey sampling to improve the precision and the accuracy of the 

estimators of population parameter. 

 

Therefore, in this thesis, we designed a technique to determine the optimum calibrated weights 

and the optimum calibrated estimators using the information available, respectively, from single 

and multiple auxiliary variables in stratified random sampling. In the proposed calibration 

estimators, the auxiliary information used is not only the population means but also the 

population stratum variances available for auxiliary variables. The problem is formulated as 

Nonlinear Programming Problem (NLPP) that seeks minimization of the chi-square distance 

function, subject to the available calibration constraints. The NLPP is then solved by developing 

solution procedure using Lagrange multiplier technique. 
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Numerical examples with real data using the univariate and multivariate auxiliary cases are 

presented to illustrate the computational details of the proposed techniques. A comparison study 

with real and simulated data is carried out to determine the performance of the proposed 

estimators based on univariate and multivariate auxiliary information. The results for univariate 

case reveal that the calibrated estimator using the proposed technique may be useful for the 

surveyors as it performs better than the other calibration estimators in stratified sampling. 

Furthermore, as it has been discussed in literature that the precision of the survey estimates is 

always improved further when multiple auxiliary information is available, it is very evident in 

this thesis. 

 

Therefore, this research will be very useful for survey researchers to get consistent estimates and 

provide more precise estimates of population parameters. However, one of the major problems 

encountered along this area of research was dealing with negative weights. Future researchers 

can address this problem whereby positive weights are being guaranteed.   
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Appendix A 
Mathematica Code for finding 0 1 1, ,� � � for univariate 
calibration estimator 
 

 
L=10; 

(*h=1*) 

xbar[1]=1304.7; 

w[1]=0.05660; 

s[1]=722185.3; 

d[1]=0.1667; 

 

(*h=2*) 

xbar[2]=29075.0; 

w[2]=0.05660; 

s[2]=839008125.0; 

d[2]=0.1667; 

(*h=3*) 

xbar[3]=5191.7; 

w[3]=0.07547; 

s[3]=74387858.3; 

d[3]=0.2083; 

(*h=4*) 
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xbar[4]=21700.0; 

w[4]=0.09434; 

s[4]=6070000.0; 

d[4]=0.2333; 

xbar[5]=6808.0; 

w[5]=0.11321; 

s[5]=63572981.3; 

d[5]=0.1667; 

xbar[6]=1800.0; 

w[6]=0.03774; 

s[6]=1620000; 

d[6]=0.2500; 

 

xbar[7]=24481.5; 

w[7]=0.28302; 

s[7]=1801653230.3; 

d[7]=0.0576; 

 

xbar[8]=294809.2; 

w[8]=0.16038; 

s[8]=322774101004.2; 

d[8]=0.1078; 

xbar[9]=6303.7; 
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w[9]=0.09434; 

s[9]=59939890.3; 

d[9]=0.2333; 

 

 

xbar[10]=350; 

w[10]=0.02830; 

s[10]=125000; 

d[10]=0.1667; 

 

 

XBAR=34438.61; 

V=2364494472; 

 

Find Root[{ 

0 1 1
1
( [ ] [ ] [ ] [ ] [ ] [ ] [ ]) 1,

L

h
w h w h w h xbar h w h d h s h� � �

�

� � � ��  

0 1 1
1
( [ ] [ ] [ ] [ ] [ ] [ ] [ ]) [ ] ,

L

h
w h w h w h xbar h w h d h s h xbar h XBAR� � �

�

� � � ��  

0 1 1
1
( [ ] [ ] [ ] [ ] [ ] [ ] [ ]) [ ] [ ] ,

L

h
w h w h w h xbar h w h d h s h d h s h V� � �

�

� � � ��  

 

a = 0.001; 

b = 0.001; 
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c = 0.001; 

Table[ 0 1 1[ ] [ ] [ ] [ ] [ ] [ ] [ ],{ ,1, }]w h w h w h xbar h w h d h s h h L� � �� � �
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Appendix B: 
Mathematica Code for finding 0 1 2 1 2, , , ,� � � � � for 
multivariate calibration estimator 
 

L=10; 

(*h=1*) 

xbar1[1]=1304.66667; 

s1[1]=722185.33333; 

xbar2[1]=1.94; 

s2[1]=0.0171; 

w[1]=0.05660; 

d[1]=0.167; 

 

(*h=2*) 

xbar1[2]=29075.0; 

s1[2]=839008125.0; 

xbar2[2]=1.37667; 

s2[2]=0.47573; 
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w[2]=0.05660; 

d[2]=0.167; 

(*h=3*) 

xbar1[3]=5191.66667; 

s1[3]=74387858.33333; 

xbar2[3]=2.79333; 

s2[3]=0.801033; 

w[3]=0.07547; 

d[3]=0.208; 

 

(*h=4*) 

xbar1[4]=21700.0; 

s1[4]=6070000.0; 

xbar2[4]=1.44333; 

s2[4]=0.736233; 

w[4]=0.09434; 

d[4]=0.233; 

 

xbar1[5]=6808.0; 

s1[5]=63572981.3; 
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xbar2[5]=1.78750; 

s2[5]=1.06983; 

w[5]=0.11321; 

d[5]=0.167; 

 

xbar1[6]=1800.0; 

s1[6]=1620000; 

xbar2[6]=1.7850; 

s2[6]=0.061250; 

w[6]=0.03774; 

d[6]=0.250; 

 

xbar1[7]=24481.5; 

s1[7]=1801653230.3; 

xbar2[7]=1.32091; 

s2[7]=0.48245; 

w[7]=0.28302; 

d[7]=0.058; 

 

xbar1[8]=294809.2; 
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s1[8]=322774101004.2; 

xbar2[8]=1.32000; 

s2[8]=0.24616; 

w[8]=0.16038; 

d[8]=0.108; 

 

xbar1[9]=6303.7; 

s1[9]=59939890.3; 

xbar2[9]=1.32667; 

s2[9]=0.03063; 

w[9]=0.09434; 

d[9]=0.233; 

 

xbar1[10]=350; 

s1[10]=125000; 

xbar2[10]=1.765; 

s2[10]=1.32845; 

w[10]=0.02830; 

d[10]=0.167; 
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XBAR1=34438.613; 

XBAR2=1.5508; 

 

 

V1 = 2364494472; 

V2=0.086540631; 

 

 

FindRoot[{ 

 

0 1 2 1 2
1
( [ ] [ ] [ ] 1[ ] [ ] 2[ ] [ ] [ ] 1[ ] [ ] [ ] 2[ ]) 1,

L

h
w h w h w h xbar h w h xbar h w h d h s h w h d h s h� � � � �

�

� � � � � ��  

 

0 1 2 1 2
1
( [ ] [ ] [ ] 1[ ] [ ] 2[ ] [ ] [ ] 1[ ] [ ] [ ] 2[ ]) 1[ ] 1,

L

h
w h w h w h xbar h w h xbar h w h d h s h w h d h s h xbar h XBAR� � � � �

�

� � � � � ��
 

0 1 2 1 2
1
( [ ] [ ] [ ] 1[ ] [ ] 2[ ] [ ] [ ] 1[ ] [ ] [ ] 2[ ]) 2[ ] 2,

L

h
w h w h w h xbar h w h xbar h w h d h s h w h d h s h xbar h XBAR� � � � �

�

� � � � � ��
 

0 1 2 1 2
1
( [ ] [ ] [ ] 1[ ] [ ] 2[ ] [ ] [ ] 1[ ] [ ] [ ] 2[ ]) [ ] 1[ ] 1,

L

h
w h w h w h xbar h w h xbar h w h d h s h w h d h s h d h s h V� � � � �

�

� � � � � ��
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0 1 2 1 2
1
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a = 0.001; 

b = 0.001; 

c = 0.001; 
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