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Abbreviation

The table below shows the list of abbreviations used throughout this thesis.

Abbreviation Meaning

CAPTCHA Completely Automated Public Turing test to tell Computers

and Humans Apart

CVP Closest Vector Problem

DLP Discrete Logarithmic Problem

DSS Digital Signature Scheme

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithmic Problem

IFP Integer Factorization Problem

LWE Learning With Errors problem

NTRU N-th degree Truncated Polynomial Ring Unit

PQC Post Quantum Cryptography

RSA Rivest, Shamir and Adleman scheme

R-LWE Ring - Learning With Errors problem

R-SIS Ring - Short Integer Solution problem

SVP Shortest Vector Problem
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Abstract

With the rapid growth and developments in information technology, data security has be-

come an integral component. Cryptography plays a very important role in establishing in-

formation security. Computational problems have been utilized aggressively by cryptog-

raphers to provide strong and secure signature schemes. Digital signature schemes con-

sist of algorithms that ensures confidentiality, authenticity, integrity and non-repudiation

of a message. In this thesis, we develop a digital signature scheme which is secure un-

der chosen message attack based on the hardness of lattice problems such as Learning

With Errors and Short Integer Solution over lattices. Our proposed scheme is potentially

practical. Signing and verifying our signature seems reasonably fast, and the size of the

signature seems compact and yet to be verified.
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Preface

This research project titled "Digital Signature Scheme over Lattices" is submitted to the

University of the South Pacific, Suva, Fiji in fulfillment of the requirements to acquire a

degree in Master of Science in Mathematics.

Cryptography contributes immensely towards data security. Signature schemes play a

key role in safe data transmission and authentication. Most of the existing signature

schemes based on the number theoretic cryptographic assumptions are not secure due to

the Shor’s algorithm on a quantum computer. The threat of quantum computer attacks

and the relevance of signature schemes for information technology security make the

development of post-quantum signature schemes necessary. Lattice-based schemes have

become very popular, as well as leading the way towards post-quantum cryptography.

Our proposed digital signature scheme is based on the hardness of lattice problems.

Chapter 1 gives an overview of the literature review and studies on the similar work

done by researches in the field of cryptography. It elaborates on the contribution of

number theory hard problems, and the importance of lattice based cryptography in the

post quantum world.

Chapter 2 discusses the background resources required for the construction of our scheme.

It highlights on the role of a digital signature scheme and the opportunities it provides to

enhance data security.

Chapter 3 provides information on lattices. It discusses the sampling technique used in

this thesis, and looks at some highly effective hardness problems on lattices.

Chapter 4 presents the proposed signature scheme, its security and performance analysis,

and a brief summary of how the scheme works.

Chapter 5 gives conclusion and provides key findings of this research with recommenda-

tions for further research.
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Chapter 1

Introduction

Cryptography is a method of protecting information and communications through the use

of codes so that only those for whom the information is intended can read and process it.

Cryptographic algorithms are employed to enhance information security. Cryptography

is classified as the symmetric key (private or secret key cryptography) and the asymmetric

key cryptography or public key cryptography.

In the symmetric key cryptography, a sender and a receiver have a common key, called

private key, which can be used for encryption and decryption of data or message, whereas

in the asymmetric key cryptosystem, a third party authority generates a pair of private

key and public key for the sender and receiver. This private and public key pair is mathe-

matically associated. As the name suggests, the public key is made available to everyone,

while the private key must remain confidential to its respective owner.

Cryptographic primitives consist of well-established mathematical algorithms that form

the foundation of secure signature schemes. Most of the notable public key cryptographic

primitives are encryption, key exchange protocol, authentication protocol, and digital

signatures such as blind signature, proxy signature, ring signature, group signature, and

identity based signature schemes.

In the modern day internet era, signature schemes play a crucial role to provide confi-

dentiality, authenticity, data integrity and non-repudiation [5]. The typical applications

of signature schemes are used in smart cards (like debit and credit cards), networking,

e-mails, web applications, and server applications.
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Public key cryptosystem was first introduced by Diffie and Hellman in 1976 in their

seminal paper [11] in which they proposed a key exchange protocol called DH-Key Ex-

change Protocol based on the Discrete Logarithmic Problem (DLP) over a finite field.

Subsequently, Rivest, Shamir, and Adleman invented a public key encryption scheme

based on the Integer Factorization Problem (IFP) known as RSA in 1978 [45]. Clearly,

the three researchers named their scheme as RSA from the initials of their last names -

Rivest, Shamir, and Adleman. Furthermore, ElGamal introduced public key encryption

scheme and digital signatures in early 1980s [15]. Elliptic curve cryptosystem was in-

troduced independently by Miller in 1985 [35], and later, by Koblitz in 1987 [25] using

the elliptic curve discrete logarithmic problem (ECDLP) over finite fields. Most of these

problems (integer factorisation problem, discrete logarithmic problem and elliptic ver-

sion of discrete logarithmic problem) are based on number theory. These problems are

tractable due to the Peter Shor’s algorithm over a quantum computer [49].

The Short Integer Solution (SIS) problem was introduced by Ajitai in 1996, where he

proposed the first worst-case to average-case reduction for a lattice problem. In addition,

he introduced a subset-sum problem in his paper, also referred to as knapsack problem

[2] for cryptographic primitives. The encryption schemes that heavily rely on SIS en-

joy the property of being provably as secure as worst-case problems which are strongly

suspected to be extremely hard to solve.

However, the applications of cryptography that are related to SIS are inherently ineffi-

cient due to the size of the associated key or public data. This means that such schemes

are essentially unable to achieve its maximum potential. With the inspiration of Ajtai’s

problem, Hoffstein, Pipher and Silverman developed the N-th degree Truncated Polyno-

mial Ring Unit (NTRU) cryptosystem in 1998 [23].

From 2005 onwards, numerous applications of the Learning With Errors problem (LWE)

were developed by researchers. However, as claimed in [37], these applications are still

inefficient and further studies are still being carried out on attaining an efficient and prov-

able secure signature scheme. To evade this inherent inefficiency, Micciancio, inspired

from the efficient NTRU encryption scheme that can itself be interpreted in terms of

lattices, introduced a scheme in [32] that consists of changing the SIS problems to modi-

fications involving structured matrices. The scheme initiated by Micciancio in 2007 was

later replaced by a more powerful alternative in [38], now commonly referred to as SIS

2



problem over Rings, or R-SIS. Peikert and Rosen observed that solving R-SIS exactly

consists of finding a short nonzero vector in a module lattice [38]. In 2010, Lyubashevsky

et al. [30] constructed an efficient ring counterpart to Regev’s 2005 learning with errors

problem. In their work, they demonstrated that this problem can be reduced to the worst

case hardness of short-vector problems on ideal lattices. Thus, ring LWE problem was

introduced. R-LWE is a ring version of the LWE problem. R-LWE is a computational

hard problem which provides a very healthy foundation for upcoming cryptographic al-

gorithms to defend against quantum computer attacks [29].

In 2011, Lyubashevsky used the R-LWE version of the classic Feige-Fiat-Shamir identi-

fication protocol and converted it to a digital signature [28]. The details of this signature

were thoroughly discussed in 2012 by Guneysu et al. [21].

In recent years there has been tremendous growth in lattice-based cryptography as a

research field. As a result, concepts such as encryption [5], identity-based encryption

[1, 13], attribute-based encryption [6], group signature schemes [20], and fully homo-

morphic encryption [18] are now available.

In today’s world of information technology, the provenance of quantum computers is

ever impending. In the near future, there is a possibility of a transit from classical com-

puters to quantum computers. The computational aptitude it could provide would cause

immediate insecurity to majority of the cryptographic schemes which are in use today.

This implies that existing signature schemes that are based on number theory, including

integer factorization problem, discrete logarithmic problem, and the elliptic version of

discrete-logarithm problem, would become sensitive to violation. In fact, these problems

have been broken due to the Shor’s algorithm over a quantum computer [49]. As a re-

sult, this has motivated the era of post-quantum cryptography (PQC), which refers to the

study and construction of cryptographic algorithms to withstand quantum subjugation.

Post-quantum cryptography algorithms will be resistent to attacks by quantum comput-

ers. There are five interesting candidates for post-quantum cryptography, which are

multivariate cryptosystem that is based on polynomials over defined finite fields [10],

code-based cryptosystem which is based on the use of an error correcting code [44],

hash-based cryptosystem that is based on the security of crptographic hash functions

[8], super singular elliptic curve isogeny that uses conventional elliptic curve operations

[25], and lattice based cryptosystem that involves lattices, either in construction or se-
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curity proof of the scheme [21, 18]. Amongst these, the most prominent candidate in

terms of design and efficiency is lattice based cryptography [18]. Its main advantage

over other post-quantum cryptosystems is that it allows for improved performance and

is, at the same time, more flexible for the basic requirements of public-key encryption

and digital signature schemes. There are various computational problems that are exist-

ing nowadays within the lattice environment. These include problems such as finding the

shortest vector (SVP), or finding a closest vector (CVP), which are thought to be resilient

to quantum-computer attacks [27]. Such properties show tremendous potential with re-

spect to security and achievability for substituting the existing asymmetric schemes that

would be vulnerable to attacks in a post-quantum world.

This thesis was inspired by the latest advances and developments of signature schemes,

and their contribution towards enhanced electronic security. Post-quantum signature

schemes are very essential component of a cryptosystem. In terms of security, they have

a very significant purpose, more specific than the conventional encryption prototype, and

are used in a variety of areas; from legal issues such as document integrity to those that

support the world’s economy through electronic commerce.
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Chapter 2

Background

2.1 Notations

In this section, we will define the notations used throughout the work in order to avoid

ambiguity.

• For a distribution S, we write S ←− χ to denote that S is chosen uniformly at

random from χ.

• pk means public key and sk means private key or secret key.

• M is a message and μ is sampled from M such that μ ∈ M .

• x and I are random positive integers.

• E represents an elliptic curve.

• Fp is a finite field.

• R is the set of real numbers.

• Z is the set of integers.

• N is the set of natural numbers.

• L is used to symbolize a lattice.
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• χ and D are uniform distributions.

• φ is used for Gaussian distribution.

• Ω is used to denote a random variable in R.

• c represents the hash value.

• σ means standard deviation.

In our proposed algorithm, the secret keys are S, E, and T, while the public keys are T1

and A. The parameters that dictate rejection probability in sampling are δ and β. A fixed

relatively small integer, τ , is to be chosen such that ‖ c.S ‖∞≤ τ over the choices of the

hash value c and the secret key S. We use ξ to represent the signature.

Column vectors are represented by bold lower-case letters, while matrices are represented

by bold upper-case letters.

2.2 Digital Signatures

Digital signature is an electronic signature that is used to authenticate digitally transferred

data and to ensure that the content of the message or the document sent has not been

altered. It uses asymmetric cryptography to encrypt the data, thus providing reasons to

believe that the data was sent by the claimed sender [48]. The four main characteristics

of digital signatures are:

• Confidentiality: Upon encryption of the data, it is confidential.

• Authentication: The receiver is able to verify the identity of the sender.

• Integrity: The data is not tampered during the transfer.

• Non-repudiation: The sender can not deny that he/she signed that particular docu-

ment.

A digital signature has the ability to validate the authenticity and integrity of a message,

software or digital document. This is done using complicated computational problems
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[29]. It is the digital version of a handwritten signature. It offers far more intrinsic

security, and possesses the ability to identify tampering and impersonation in digital

communications.

To create a digital signature, the data to be signed is used to construct a one-way hash by

a signing software, for example, an email program. Then, the hash is encrypted with the

private key. Thus, a digital signature is formed with the encrypted hash and the hashing

algorithm. Hashing plays a major role in digital signature schemes. It can convert an

arbitrary input into a fixed length value, that is usually much shorter as well as faster to

implement. Hashing is a function that condenses a message into an irreversible fixed-

length value, or hash. It is designed to be a one-way function, that is, a function which is

impossible to invert. A hash function is defined as follows:

Definition 2.2.1. A hash function is defined by c = H : {0, 1}∗ −→ {0, 1}k. This takes

a message as an input and returns a fixed-size bit string. This string is called the hash

value or message digest.

The hash function has three main properties:

1. It is extremely easy to calculate a hash for any given data.

2. It is extremely computationally difficult to calculate an alphanumeric text that has

a given hash.

3. It is extremely unlikely that two slightly different messages will have the same

hash value.

The hash value is always unique to the hashed data. If the data is altered or influenced in

any little way, then a different hash value is created. This property is very beneficial, as

it enables others to validate the integrity of the data by using the signer’s public key to

decrypt the hash. If the hash value obtained after decryption matches a second computed

hash of the same data, then this means that the data was not altered since it was signed.

If the two hash values do not match, then it is obvious that the message has either been

tampered with in some way (integrity) or the signature was created with a private key

that doesn’t correspond to the public key presented by the signer (authentication).
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An important feature of digital signature schemes is its flexibility. It can be applied with

any kind of message, whether it is encrypted or not as shown in [8]. Digital signatures

make it arduous for a signer to deny having signed something (non-repudiation), as-

suming their private key has not been negotiated. The digital signature binds both the

document and the signer, hence becomes unique in the process.

The concept of digital signatures is an application of public key cryptography. One can

generate two keys that are mathematically connected - a public key, pk, and a private

key, sk. The key sk is used to generate signatures, while, the key pk is used to verify

signatures. Since pk is a public key, it is made available for everyone, meaning, the

attacker knows it too. So while only a signer in possession of the private key can generate

signatures, anyone in possession of the corresponding public key can verify the signature.

Definition 2.2.2. A Digital Signature Scheme DSS = (KeyGen, Sign, Verify) consists of

three algorithms, as follows:

• KeyGen - From a distribution of possible private keys, a private key is generated

uniformly at random using a key generation algorithm. The algorithm outputs the

private key sk and a corresponding public key pk.

• Sign - The signing algorithm Sign takes the private key sk and a message M to

produce a signature ξ. We write ξ ←− Signsk(M) or ξ ←− Sign(sk, M) for the

algorithm of running Sign on inputs sk, M and letting ξ be the signature returned.

• Verify - The deterministic verification algorithm takes a public key pk, a message

M, and a candidate signature ξ for M to return a bit. We write V erify(pk, M, ξ)

to denote the algorithm of running Verify on inputs pk, M, and ξ. This algorithm

either accepts or rejects the signature.

The scheme works in the following manner. Let S be an entity that wants to have a digital

signature capability. Firstly, the algorithm KeyGen is run by S to generate a pair of keys

(pk, sk) for itself. Secondly, Signsk(M) is run by S to produce a digital signature on some

document M ∈ Messages(pk), which is the set of all messages, to produce a signature ξ.

The pair (M, ξ) is then the authenticated version of the document. Thirdly, after receiving

a document M ′ and tag ξ′ supposedly to be from S, a receiver who has possession of pk

verifies the authenticity of the signature by applying the specified verification procedure.
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This depends on the message, signature, and public key. Specifically, the receiver verifies

the message obtained by computing V erifypk(M
′, ξ′), whose value is a bit. If this value

is 1, it is read as saying the signature is authentic, and so the receiver accepts it as coming

from S. Else it discards the signature as unauthentic.

It is necessary that any receiver willing to verify S’s signatures must be in possession of

S’s public key pk, and must assure that the public key is authentic, meaning really is S’s

key and not someone else’s key. Finally, the Verify algorithm checks that the signatures

that were correctly generated will pass the verification test. This check ensures that

authentic signature will be accepted by the receiver.

Majority of the modern email programs in practice today support the use of digital signa-

tures, treating it as an easy mechanism to sign any outgoing emails and validate digitally

signed incoming messages. Digital signatures are also utilized extensively to guarantee

proof of authenticity, data integrity and non-repudiation of communications and transac-

tions conducted over the internet.

2.3 Computational Hard Problems and Elliptic Curves

Number theory consists of concepts that present many problems that are hard to solve

[17]. Thus, over the past years, number theory has become a major contributor to cryp-

tographic algorithms. It has contributed some popular and widely used problems in the

construction of secure signature schemes.

2.3.1 Integer Factorization Problem

In the field of number theory, the integer factorization problem refers to the decomposi-

tion of a composite number into it’s product, usually in the form of smaller integers. To

make this concept hard enough to be considered in cryptographic algorithms, the method

of prime factorizations is employed, where the integers are restricted to prime numbers.

The underlying difficulty of this problem plays a major role in many of the practically

used algorithms in cryptography such as RSA [17].

Definition 2.3.1. [17] The Integer Factorization Problem (IFP) is as follows: given a
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positive integer I , compute its decomposition into prime number components ei and di

as I =
∏ei

di
(unique up to reordering).

2.3.2 Discrete Logarithmic Problem

Discrete logarithms are logarithms defined with regard to multiplicative cyclic groups.

The hardness of finding discrete logarithms depends on the cyclic group, which is is a

group that is generated by a single element.

Definition 2.3.2. [17] Let G be a cyclic group of order N generated by P . Assuming

that there exists a polynomial time algorithm for computing the group law in G, and that

P is a given integer, the Discrete Logarithm Problem (DLP) in G is defined as follows:

given any element y in G, compute an integer x ∈ G such that y = gx .

2.3.3 Elliptic Curve Discrete Logarithmic Problem (ECDLP)

Elliptic Curve Cryptography (ECC) is a very effective technique based on public key

encryption. It employs the concept of elliptic curve theory and optimizes its advantages

to create faster, smaller, and more efficient cryptographic keys. ECC generates keys

using the characteristics of the elliptic curve equation rather than the commonly used

method of generation as the product of very large prime numbers.

Basically, an eliptic curve is defined as follows:

Definition 2.3.3. [22] An elliptic curve is a nonsingular plane algebraic curve over some

infinite field, resulting in a smooth plane cubic curve with the point at infinity, and we

can describe the curve as points satisfying the equation: y2 = x3 + ax + b , with a and b

such that the discriminant, ∇ = −16(4a3+27b2), is nonzero (which will give the desired

nonsingularity).

ECC has been widely studied by researchers over the past years and has been combined

with various hard mathematical problems to enhance the security of signature schemes.

One such concept is the Elliptic Curve Discrete Logarithmic Problem (ECDLP).

We now define the ECDLP.
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Definition 2.3.4. [46] Let E be an elliptic curve over some defined finite field, F, and let

P and Q be points in F. The Elliptic Curve Discrete Logarithm Problem is the problem

of computing an integer x, where x ∈ [0, p − 1], such that Q = xP . We denote this

integer x by x = logP (Q) and we call x the elliptic curve discrete logarithm of Q with

respect to P.

The ECDLP is the mathematical trapdoor function underpinning elliptic curve. This

problem is the fundamental building block for elliptic curve cryptography and pairing

based cryptography, and has been a major area of research in computational number

theory, geometry, and cryptography for several decades.

This computational problem is assumed to be hard and resistent to attacks. ECDLP was

widely believed to be one of the hardest computational number theory problem used in

cryptography. In [39, 46, 41], the authors provide new index calculus algorithms to solve

ECDLP over fields of prime cardinality. Furthermore, ECDLP has also suffered from in-

dex calculus attacks over finite fields of sub-exponential complexity using recommended

key sizes [16].

2.4 Existing Signature Schemes

In this section, we briefly highlight the workability and the mathematical background of

some existing digital signature schemes. Throughout this section, the name Bob is used

as the sender and Alice is used as the receiver of the message.

2.4.1 RSA Digital Signature Algorithm

As discussed in detail in [24], this algorithm employs the integer factorization problem.

This method contemplates the public key of Bob and hash function is publically known.

Bob performs the following to commence:

1. Selects two prime numbers p and q and computes N = p.q.

2. Computes Euler’s Totient Function φ(N) = (p − 1).(q − 1).
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3. Computes the secret key sk such that sk.pk = 1 mod [φ(N)].

Thus, the public key set of Bob contains N and pk, and private key contains N and

sk. Bob uses the private keys to generate the signature of the message.

4. Bob hashes the message M to obtain c, i.e c = H(M).

5. Bob can now generate the digital signature sign = csk mod N , where sign is the

signature.

Once the signature has been produced, Bob sends (M , sign) to Alice.

6. Alice uses the H() to obtain the c′ = H(M ′), i.e hash′ function.

7. Alice decrypts the signature to retrieve its hash c =signpk mod N .

8. Alice finally checks if c = c′.

If the match is attained in the hash value retrieved and the hash value calculated, then

Alice confirms the validity of the signature, otherwise it is rejected.

2.4.2 ElGamal DSS

According to [15], ElGamal digital signature is the asymmetric approach of verification

technique based on discrete logarithm problem over a finite field. This mechanism has

the following parameters:

• g - a random number that serves as the generator;

• q - a prime number;

• H() - is the hash function.

The algorithm is summarized as follows:

1. In the KeyGen algorithm, Bob randomly chooses a secret key sk with 1 < sk <

q − 2, and then computes the public key pk using sk, i.e. pk = gsk(mod q);

Bob performs the following steps in order to sign a message M ;
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2. Bob chooses a random integer x such that 1 < x < q − 2 and gcd(x, q − 1) = 1,

where gcd refers to the greatest common divisor;

3. Thus, at this stage, Bob computes K1 = gx(mod q);

4. Bob computes K2 = (H(M) − sk.K1)
−1(mod q − 1);

The pair (K1, K2) is the digital signature of M . This signature is verified by Alice

as follows:

5. Alice chooses 0 < K1 < q and 0 < K2 < q − 1;

6. Then, Alice computes gH(M) = pkK1KK2
1 (mod q).

Alice accepts the signature if all the conditions are satisfied, and rejects it otherwise.

2.4.3 Digital Signature Algorithm (DSA)

Davtyan et al. [9] describe this algorithm thoroughly in their work. The algorithm is

generated using the parameters as follows:

p - a prime modulus;

q - a prime divisor of (p − 1);

g - a generator of the sub group of order q (mod p);

x - the private key;

y - the public-key obtained through y = gx (mod p);

k - the per message secret key obtained randomly from the range 1 < k < q.

In the KeyGen algorithm, Bob chooses a secret key x, where 1 < x < q. Bob then

calculates the public key y = gx (mod p).

The signature of message M consists of a pair of numbers r and s determined using:

r = gk (mod p) mod q;
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s = (k−1(H(M) + xr)) (mod q).

Thus, the signature (r, s) is produced. Bob transmits message M and (r, s) to Alice, who

verifies the signature by performing the following.

1. Alice checks that 1 < r < q and 1 < s < q; the signature is rejected if one of these

fails.

2. If both the conditions above are satisfied, Alice computes:

w = s−1(mod q);

u1 = H(M) · w (mod q);

u2 = r · w (mod q);

v = ((g)u1(y)u2) (mod p) mod q.

3. If v = r , then the signature is accepted otherwise it is rejected.

2.4.4 Elliptic Curve ElGamal (EC ElGamal) Digital Signature Algo-

rithm

The concept of Elliptic Curve Cryptography has been embedded into the ElGamal Digital

signature algorithm to produce EC ElGamal Digital Signature Scheme as shown in [7].

The sender Bob, denoted here as B, selects a random integer kB from the interval [0, q−1]

as the private key and computes the public key, B = kBG. The signing procedure is given

in the following steps.

1. Choose a random integer k from the interval [0, q − 1].

2. Compute R = kG = (xR, yR), where r = xR(mod q) if r = 0 goto step 1.

3. Compute e = H(M), where H is the hash function {0, 1}∗ −→ Fq.

4. Compute s = k−1(e + rkB)mod q; if then goto step 1.

The signature of message M is (R, s). Bob now sends the signature and the message

to Alice for verification. It must be verified that s is an integer in [0, q − 1] and R =

(xR, yR) ∈ E(Fq). Alice performs the following to verify the signature.
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1. Compute V1 = sR.

2. Compute V2 = h(M)G + rA, where r = xR.

3. If V1 = V2, then the signature is accepted by Alice, else declared as invalid.

Due to Shor’s algorithm [49], the IFP and the DLP over a finite field are broken on a

quantum computer. Furthermore, ECDLP is also broken on a quantum computer [49].

The design of quantum computers and its implementation to commercial use is fast ap-

proaching in the very near future. Hence, there is a necessity to develop a system which

can sustain on a classical computer but it should be quantum attack resistent.
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Chapter 3

Lattices

3.1 Background of Lattices

Lattices have been widely studied in the past two decades by various cryptologists. The

concept of lattices was first studied in the late 18th century by the mathematicians Joseph

Louis Lagrange, Carl Friedrich Gauss, and later Minkowski as mentioned in [37]. The

concept of lattice is applied in various fields but its essential application to cryptography

was initiated by the work of Ajtai in [2], whose work involved the construction of lattice

based cryptographic system which constitutes mathematical problems which are hard to

solve.

Lattice-based cryptography is based on the construction of complicated mathematical al-

gorithms using cryptographic parameters involving lattices. The main objective here is

to enhance data security. Recently, lattice-based schemes have become very popular, as

well as leading the way towards the post-quantum cryptography as revealed from studies

in [37]. Unlike other famous and widely used public-key cryptographic schemes such

as the RSA or Diffie-Hellman cryptosystems, which are vulnerable and can be easily at-

tacked by quantum computer based algorithms, some lattice-based constructions appear

to be resistant to attacks by both classical and quantum computers. Furthermore, many

such lattice-based constructions are proven to be secure under the assumption that certain

well-studied computational lattice problems cannot be solved efficiently.

A Lattice, L, is defined as follows.
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Definition 3.1.1. The m-dimensional Euclidean space is denoted R
m. A lattice in R

m

is the set of all integer combinations L = {∑n
i=1 xib : xi ∈ Z} of n linearly independent

vectors b1, ..., bn in R
m(m ≥ n). The set of vectors b1, ..., bn is said to form a basis of

the lattice, and the integer n is called the rank of the lattice. A basis can be compactly

represented by the matrix B = [b1|...|bn] ∈ R
m×n having the basis vectors as columns.

The lattice generated by B is denoted L(B).

The product Bv is the usual matrix-vector multiplication. Thus, we have L(B) = {Bv : v ∈ Z
n}.

Z
n is a lattice, which is generated by the standard orthonormal basis for R

n . In addition,

the basis for a lattice is not unique. The value of the norm of a vector is basis dependent.

The Euclidean norm depends on vector components, which further rely on the choice of

basis.

Definition 3.1.2. For any j ≥ 1, the norm of a vector v ∈ R
n is defined as

‖ v ‖j=
j
√∑

vi

The minimum distance of a lattice, D(L), is the minimum distance between any two

distinct lattice points and is equivalent to the length of the shortest nonzero lattice vector,

as given by the following definition:

Definition 3.1.3. The minimum distance of a lattice, D(L), is defined as

D(L) = min‖ x − y ‖: x 
= y ∈ L = min‖ x ‖: x ∈ L, x 
= 0.

When discussing computational issues related to lattices, it is usually assumed that the

lattices are represented by a basis matrix B whereby B has entries which are integers.

Lattices are the objects that are more geometric in nature. Hence, it can be more thor-

oughly described as the set of intersection points of an infinite, regular n-dimensional

grid as shown in [31]. The numerous flexible characteristics of lattices makes them quite

a valuable concept that can be used to attack many significant problems in mathematics

and computer science. In particular, lattices have been used to solve integer programming

with finitely many variables [33], factorization of polynomials over the integers [49], low

density subset-sum problems [26], and many other cryptanalytic problems [37]. Lattices

are discrete additive subgroups in vector spaces. They are important for us, since the
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embedding of all rings and ideals that we consider are actual n-dimensional lattices in

R
n.

Definition 3.1.4. An n-dimensional lattice L is any subset of R
n that is both:

1. an additive subgroup: 0 ∈ L, and −x, x + y ∈ L for every x, y ∈ L; and

2. discrete: every x ∈ L has a neighborhood in R
n in which x is the only lattice point.

There have been many successful and effective applications of lattice problems in cryp-

tography. As discussed by Peikert et al. in [37], the Shortest Vector Problem (SVP) and

the Closest Vector Problem (CVP) are amongst the most popular versions of lattice prob-

lems. These problems are thought to be hard to solve efficiently, even with a quantum

computer. In cryptographic constructions, a hard problem is usually given due respect,

and is always considered to be secure.

Lattice-based cryptographic constructions have tremendous potential as researchers keep

on exploring cryptographic algorithms and its contribution towards secured signature

schemes. The main purpose of lattice cryptography is to protect data transmitted in the

likely presence of an attacker. This is usually done by employing hard cryptographic

algorithms in order to strengthen security. If there exists an algorithm that can efficiently

break the cryptographic scheme with non-negligible probability, then there exists an ef-

ficient algorithm that solves a certain lattice problem on any input.

Cryptographic algorithms that are complicated rely on sophisticated techniques from

which inputs and entries can be retrieved. Thus, we need to employ a feasible sampling

technique that will guarantee security of our scheme. Precaution must be taken that the

signatures will not leak the private keys.

3.2 Sampling

We will use the technique of rejection sampling [10], which is one of the many techniques

to generate samples from a distribution. Using this technique, given one distribution,

appropriate samples can be evidently drawn from another distribution by applying some

rejection/ acceptance rule to the sample.
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Rejection sampling is employed in our scheme mainly because it guarantees that the

uniform distribution Z
m×n
q is independent of the secret.

Definition 3.2.1. Let X : Ω −→ R be a random variable. The probability density

function of X , denoted by fX(x), is defined to be fX(x) = Pr(X = x).

In other words, fX(x) is the probability that X takes on the value x.

Lemma 3.2.1. Let f : Z
n −→ R be a probability distribution. Given a subset V ⊆ Z

n,

let h : V −→ R be a probability distribution defined on V . Let gv : Z
n −→ R be a family

of probability distributions indexed by v ∈ V such that for almost all v’s from h there

exists a universal upper bound U ∈ R such that the success probability is Pr[Ugv(T ) ≥
f(T ); T ←− f ] ≤ 1.

Then the output distributions of the following two algorithms have negligible statistical

difference:

1. v ←− h, T ←− gv, output(T, v) with probability min( f(T )
UgvT

, 1). Else fail.

2. v ←− h, T ←− f, output(T, v) with probability 1
U

.

In the following section, we recall the hardness assumption problem over lattices.

3.3 Hardness Problems of Lattices

In cryptography, a notable objective is to make cryptographic primitives with provable

security. Provable security refers to any type of security that can be proved. This nor-

mally refers to mathematical proof which is quite common in cryptography. However,

as information theoretic security cannot always be achieved, cryptographers have to rely

on computational security to be assured that these systems are generally secure. Because

hardness of a problem is difficult to prove, in practice, certain problems are "assumed"

to be difficult [40].

Over the past couple of decades, the attempts of cryptographic researchers have revealed

that the hardness of the Lattice-based schemes is built upon the following problems:
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1. Short Vector Problem (SVP)

2. Closest Vector Problem (CVP)

3. Learning With Errors Problem (LWE)

3.3.1 Short Vector Problem

In order to construct strong and secure post-quantum signature schemes, it is essential to

establish computational problems, whose hardness can be utilized as a weapon to boost

their security. Furthermore, the cryptographic algorithms used in such schemes must

remain difficult even in the presence of quantum computers. One suitable contender

for this concept is the problem of approximating short vectors in a lattice (SVP). The

quantum-hardness of the short vector problem was analyzed by Ludwig [27] and Regev

[42]. Through their studies, they both concluded that the computational advantage that

will be attained with quantum computers is marginal. There are numerous cryptographic

schemes whose security relies heavily on the intractability of the SVP in lattices of suf-

ficiently large dimension [19, 23].

SVP is the most famous and widely studied computational problem on lattices. The

major objective in SVP is that given a lattice, L, which is usually represented by a basis,

one has to find the shortest nonzero vector in L. The problem can be defined with respect

to any norm, however the Euclidean norm is the most common. As discussed in [47],

a variant of SVP was commonly studied in computational complexity theory, where it

only asks to compute the length of the shortest nonzero vector in L without necessarily

solving for the vector.

With regards to the Euclidean norm, the hardness of SVP was theorized by van Emde

Boas in [50]. The theory remained wide open until 1998, when Ajtai proved in [2] that

SVP is hard to solve exactly under randomized reductions. The strongest hardness result

for SVP known to date is due to Micciancio [31].

To compute the length of the shortest vector in a lattice, no efficient algorithm in poly-

nomial time is known to date. In spite of a number of attempts, researchers and analysts

actually have not been able to find the shortest vector in a lattice [32]. Undoubtedly, fail-

ure to do this is an advantage from the cryptographic point of view, whereby the hardness
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of approximating SVP within certain polynomial factors can be used as an essential in-

gredient for the construction of provably secure cryptographic functions.

Definition 3.3.1. Let a lattice basis be given as L(B). Then, the Shortest Vector Problem

is the problem of finding a vector v ∈ L(B) such that ‖ v ‖2 is minimal.

In the SVP, the aim is to find the shortest nonzero vector from a given lattice. This simply

refers to the intersection point in the grid closest to the origin.

3.3.2 Closest Vector Problem

The Closest Vector Problem (CVP) is a computational problem on lattices. Given a lattice

L and a target point 	x, the CVP asks to find the lattice point closest to the target. This

problem is usually defined with respect to the Euclidean norm. Mostly in complexity

theory, a less complicated version of the problem only asks to compute just the distance

of the target from the lattice without actually finding the closest lattice vector.

Majority of the practical versions of the CVP only asks to find a lattice vector that is

as close as possible to the target, even if not necessarily the closest. According to [4],

g-approximation algorithm for the CVP finds a lattice vector within a distance at most g

times the distance of the optimal solution. The best known polynomial time algorithms to

solve the CVP due to Babai [4] are based on lattice reduction, and achieve approximation

factors that are essentially exponential in the dimension of the lattice.

CVP is widely regarded, both in theory and in practice, as a considerably harder problem

than SVP.

Definition 3.3.2. Let a lattice basis be given as L(B). Then, the Closest Vector Problem

is the problem that given a vector u 
∈ L(B) find a vector v ∈ L(B) such that ‖ v - u ‖2

is minimal.

In CVP, the objective is that, given a lattice and a target point which may not necessarily

be in the lattice, find the lattice point closest to the target.
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3.3.3 The Learning With Errors Problem (LWE)

Recently, the LWE, which was first introduced in [44], has established itself in the field

of cryptography. Over the years, it has become a highly flexible and adaptable basis

for cryptographic constructions. The LWE has attained its position amongst the highest

level with regards to providing cryptographic security. As claimed in [34], just like many

other Lattice-based problems, LWE problem is very hard to solve. It is as hard as worst-

case lattice problems, hence furnishing all cryptographic constructions based on it secure

under the assumption that worst-case lattice problems are hard.

The main parameters in this problem are the positive integers n, q ∈ N. The problem

is based on χ which is the uniform distribution on Zq and φ = Dαq for some fixed real

number 0 < α < 1.

Definition 3.3.3. [3] Let n, q ∈ N and let χ and φ be distributions on Z. The LWE

distribution for a given vector s ∈ Z
n
q is the set of pairs (a, a · s + e(mod q)) where

a ∈ Z
n
q is sampled uniformly and where e is sampled from φ.

• The computational-LWE problem is: For a vector s ←− χn and given arbitrarily

many samples from the LWE distribution for s, to compute s.

• The decisional-LWE problem is: Given arbitrarily many samples from Z
n
q to distin-

guish whether the samples are distributed uniformly or whether they are distributed

as the LWE distribution for some fixed vector s ←− χn.

In the computational version, to be successful, an attacker has to find s ∈ Z
n
q given

a ∈ Z
n×m
q . This implies that any random and efficient distinguisher between LWE and

uniform distributions may be utilized to recover the secret key. The essential concept of

small error distribution has been vigorously studied in [14] and [34]. In these studies, it

is chosen independently and identically from a Gaussian-like distribution. The standard

deviation is taken as σ = αq.

Moreover, a quantum reduction was shown by Regev in [43] signifying LWE problem is

as hard in the average-case as approximating lattice problems in the worst-case with an

approximation factor Õ(n/α) and αq ≥ 2
√

n.
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Theorem 3.3.1. [44] Let n, q ∈ N and 0 < α < 1 be such that αq ≥ 2
√

n. Then there

exists a quantum reduction from worst-case SV PÕ(n/α) to (n, q, α)- LWE.

Here, a relatively small error distribution will lead to complicated situations, meaning,

for all vectors that will probably be sampled as s ←− χn, the LWE distribution is not

statistically close to the uniform distribution. There exists a unique solution s that is

probably used to generate samples from the LWE distribution.

Furthermore, Regev’s main theorem [44] suggests that the LWE problems are as hard as

worst-case assumptions in general lattices when χ is the uniform distribution and when

φ is a discrete Gaussian with standard deviation σ = αq for some fixed real number

0 < α < 1.
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Chapter 4

Proposed Signature Scheme and

Analysis

4.1 Proposed Signature Scheme

The design of the proposed scheme is based on providing a variant of Dilithium tech-

nique by Ducas et al. [12]. Dilithium is a digital signature scheme that is strongly secure

under chosen message attacks based on the hardness of lattice problems over module

lattices.The security aspect of this scheme is quite strong, whereby an attacker who has

access to a signing oracle is unable to generate the signature of a message whose sig-

nature he has not seen before, nor produced a different signature of a message that he

already saw signed.

The proposed signature scheme is described in Algorithms 1, 2, and 3.

In the key generation algorithm, the secret key is notated as (S, E, T) and the public key

is (T1, A). The key generation begins with choosing random keys from some uniform

distribution, χ, in the LWE assumption, which is expanded into a matrix A∈ Z
m×n
q .

A is an m × n matrix which is uniformly chosen from Z
m×n
q . DσS

and DσE
are the

distributions for the secret and error, respectively, in the LWE assumption. DσS
and DσE

are discrete Gaussians with standard deviation σS = σE ≥ 2
√

n as shown in [42]. The

scheme is designed as such that we have m > n and q > 2d. The main security parameter

is n. This parameter is quite significant as the security of our scheme relies heavily on
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Algorithm 1 KeyGen()

Input : n, m, q, σS , σE

1. A ←− Z
m×n
q

2. S ←− Dn×1
σS

3. E ←− Dm×1
σE

4. T = AS + E

5. T1 := Power2Roundq(T, d)

6. returnpk = (A, T1), sk = (S, E, T)

n, as well as q. Our work is inspired by the LWE problem. The LWE distribution is

on pairs (A, AS + E (mod q)), where S and E are matrices. S ∈ Z
n×1
q and E ∈ Z

m×1
q

are chosen to have entries sampled independently from the distributions DσS
and DσE

.

Matrix A∈ Z
m×n
q is a master public key, thus is shared across all instances.

As shown in Theorem 3.3.1, we recommend that the parameters n, q, and α are chosen in

a manner such that σ = αq > 2
√

n, where 0 < α < 1. Further, m should be chosen such

that qm > qn(2E + 1)n. This condition will ensure that there will be a unique solution S

that could be used to generate the required samples from the LWE distribution.

The main feature of the proposed scheme is to have a public key of the form

T1 = Power2Roundq(T, d),

where T = AS + E and A is an m× n matrix whose entries are from Z
m×n
q . The private

keys S and E are selected to have entries sampled independently from the distributions

DσS
and DσE

. Thus, in Step 4, the value of the function T = AS + E is then computed.

The approach here is to hash and sign. As the signing algorithm commences, the entire

function T = AS + E is split into T1 and T0 such that T1 · 2d + T0 = T as shown in

Lemma 4.1.1.

The signer samples Y with coefficients in Dn×1
σY

after which, in Step 5, W = AY is

computed. Next, the signer must decompose W to obtain W1. Note that W0 here is

concealed in the interval −δ and δ inclusive, and is not revealed. Subsequently, the signer

breaks W and writes W = W1 ·2δ+W0, and computes the hash value c = H(T1, W1, μ).

The message is denoted by μ ∈ M . Once the c value has been obtained, the signer
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Algorithm 2 Sign

Input : sk = (S, E, T), μ ∈ M, Dn×1
σY

1. A ←− Z
m×n
q

2. T1 := Power2Roundq(T, d)

3. T0 := T − T1 · 2d

4. Y ←− Dn×1
σY

5. W := AY

6. W1 := HighBitsq(W, 2δ)

7. c := H(T1, W1, μ)

8. Z := Y + cS

9. (λ1, λ0):= Decomposeq(W − cE, 2δ)

10. if‖Z‖∞ ≥ β − τ or ‖λ0‖∞ ≥ δ − τ or λ1 
= W1 then go to 4

11. Z2 := Makehintq(−cT0, W − cE + cT0, 2δ)

12. if‖cT0‖∞ ≥ δ or the number of 1’s in Z2 is greater than ω, then go to 4

13. return ξ := (Z, Z2, c)

then computes Z = Y + cS. The rejection sampling technique is used to return Z with

probability min (
Dn

Z (Z)

Dn
Y, Sc(Z)

). This ensures that Z is generated in order to protect S.

At this stage, the signing procedure can restart subject to two conditions. Firstly, if some

coefficient of Z is at least β − τ , and secondly, if the magnitude of some coefficient of

λ0 = LowBitsq(W − cE, 2δ) is at least α − τ . This step is quite an essential part of the

scheme. This part ensures that no information about the secret keys S and E is leaked.

In order to verify correctness, it is important to check and ensure that λ1 = W1. It must

be noted that if ‖cE‖∞ ≤ τ , then ‖λ0‖∞ automatically becomes less than δ − τ , which

implies that λ1 = W1.

In the event that every one of the checks are successful and a restart is not required, then

it can be shown that HighBitsq(AZ − cT, 2δ) = W1. The proof is shown in Lemma

4.1.2.

Lemma 4.1.1. To enhance the security of the system, T, we break down T to T1 :

T1 := Power2Roundq(T, d).

Proof. As mentioned earlier, q is a prime number, and d is some random positive integer
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such that it satisfies the condition q > 2d. To break up T:

We have T
2d = T1 remainder T0.

This implies that T = T0 + T1 · 2d.

Thus, T1 = T−T0

2d .

Definition 4.1.1. We now define the functions Decomposeq, HighBitsq and LowBitsq:

The procedure Decomposeq(W − cE, 2δ) breaks down the function W − cE into its

components λ1 and λ0. Then, we have

W−cE
2δ

= λ1 remainder λ0,

W − cE = λ1.2δ + λ0,

λ1 = HighBitsq(W − cE, 2δ) = W−cE−λ0

2δ
,

λ0 = LowBitsq(W − cE, 2δ) = W − cE − λ1.2δ.

The components λ1 and λ0 are simply extracted from the function Decomposeq using

the functions HighBitsq and LowBitsq, respectively.

We employ the cryptographic hash function defined in [12] for our signature scheme.

Definition 4.1.2. A hash function is a function which maps from arbitrary string {0, 1}∗
to Bk,w, where k is the length of the string and w is the weight of the string. Symbolically,

we notate the function as H : {0, 1}∗ −→ Bk,w. Concretely, we use the following :

1. Initialize c = c0c1...c255 = 00...0

2. for i := 196 to 255 do

3. j ←− {0, 1, ..., i}

4. s ←− {0, 1}

5. ci := cj

6. cj := (−1)s

7. end for
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8. return c

Thus, a random 256-element array with 60± 1’s and 196 0’s will be generated.

Definition 4.1.3. We refer to [12] for the procedure Makehintq (−cT0, W − cE +

cT0, 2δ), which is defined as follows:

1. λ1 := HighBitsq(W − cE + cT0, 2δ)

2. v1 := HighBitsq(W − cE, 2δ)

3. if λ1 = v1 then

4. return 0

5. else

6. return 1

7. end if

Definition 4.1.4. We again refer to [12] for the procedure UseHintq(Z2, AZ − cT1 ·
2d, 2δ), which is defined as follows:

1. let m := (q − 1)/2δ

2. (λ1, λ0):= Decomposeq(AZ − cT1 · 2d, 2δ)

3. if Z2 = 1 and λ0 > 0 then

4. return (λ1 + 1) mod+m

5. else if Z2 = 1 and λ0 ≤ 0 then

6. return (λ1 − 1) mod+m

7. else

8. return λ1

9. end if
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Algorithm 3 Verify

Input : pk = (T1), μ ∈ M, ξ := (Z, Z2, c)

1. A ←− Z
m×n
q

2. W1 := UseHintq(Z2, AZ − cT1 · 2d, 2δ)

3. if c = H(T1, W1, μ) and ‖Z‖∞ ≥ β − τ and the number of 1’s in Z2 is ≤ ω then

4. return 1

5. else

6. return 0

7. end if

In the verification algorithm, the signature and the public key are used to regenerate W1.

In line 3, it also analyzes that c = H(T1, W1, μ). It examines all the coefficients of Z and

also scrutinizes all the number of 1’s in Z2, which is decided by the values of cTo that

cause a carry to occur. Hence, the verification algorithm will accept if the W1 calculated

by the verifier is the same as that of the signer.

Lemma 4.1.2. To prove the correctness of our signature scheme, we claim that HighBitsq(AZ−
cT, 2δ) = W1.

Proof. We refer to [12] for the proof. Since W = AY and T = AS+E, we have W−cE =

AY − cE = A(Z − cS) − cE = AZ − cT. Furthermore, W − cE + cT0 = T − T1 · 2d.

Thus, while verifying, the verifier will compute UseHintq(Z2, AZ − cT1 · 2d, 2δ) =

HighBitsq(AZ − cT, 2δ).

In addition, the signer must also check that λ1 = W1, which is obviously equivalent to

Highbitsq(W − cE, 2δ) = HighBitsq(W, 2δ). As a result, the verification algorithm

will always accept because the W1 computed by the verifier is exactly same as the one

obtained by the signer.

4.2 Security Analysis

In this section, we provide security analysis of the scheme. The scheme can be compu-

tationally secure.
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4.2.1 Security of the Secret Key

In order for our scheme to be secure, the minimum requirement is that the security of the

secret key is given the highest priority. An attacker has access to the public key of the

signer. The determination of the secret key from the public key must be impossible at all

times.

Our proposed signature scheme involves public keys (T1, A) and secret keys (T, S, E),

and consists of mathematical algorithms that use these keys. A very interesting charac-

teristic of our verification algorithm is that it does not have any idea about the secret keys

while performing the verification process. The verification algorithm has access only to

the public key. We have taken extreme precaution while constructing our scheme, assur-

ing that the owner of the secret key should be able to produce valid signature, however

knowledge of the public key must not reveal the secret key.

Two general conditions that guarantee the security of the secret key and our proposed

scheme are :

1. Given a public key (T1, A), an attacker cannot feasibly determine the secret key

(T, S, E). Moreover, the attacker must not be able to negotiate any other secret key

that can produce the same signatures.

2. Given a public key (T1, A) and a list of signed messages μ1, μ2, ..., μt with their

signatures ξ1, ξ2, ..., ξt, an attacker is not able to conceivably obtain a valid signa-

ture on any message μ that is not in the list μ1, μ2, ..., μt.

According to condition 2, an attacker can generate as many message and signature pairs

as desired, since these can be created using the common public key. However, a digi-

tal signature scheme reveals a new message/signature pair each time a new message is

signed. This provides new information to the attacker. Condition 2 further says that the

attacker gains nothing else apart from the knowledge of that new pair. An attack on a

digital signature scheme that makes use of a large number of known signatures is called

a transcript attack.
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4.2.2 Brute Force Attack

Brute Force Attack is a trial and error method used by attackers to exploit and decode

encrypted data, through a vigorous and exhaustive approach rather than applying some

intellectual strategies.

In cryptography, this method can be used against any encrypted data. A Brute Force

Attack simply uses the search algorithm. This approach usually becomes necessary when

it is not possible to take advantage of other weaknesses in an encryption system that

would make the task easier. It involves systematically checking all possible keys until

the correct key is found. In the worst case, this would involve browsing through the

entire search space. The size of the key used in the scheme determines the feasibility and

performance of a brute-force attack. Larger key lengths would be more harder to crack

than the shorter ones.

For our scheme, we suggest a 256-bit secret key which requires 2256 operations to break

the scheme via brute force attack. It can take a total of 1057 years to do so.

4.2.3 Security Proof against Forgery

Assume that the attacker obtains the key T = AS + E. This assumption is of a disadvan-

tage to the attacker because in our proposed scheme, he only has access to T1, thus in

actual practice, our scheme will be more difficult to exploit.

The underlying goal of any attacker is forgery. We consider the case where the attacker

attempts to produce an alternate message which did not originate with the sender. The

attacker is allowed a chosen message to attack in the process of trying to produce forg-

eries. Therefore, in this situation, our objective is to establish a measure of insecurity

against forgery under chosen message attack for our scheme.

The attacker’s actions can be divided into two phases. The first is a learning phase where

it is provided access to the oracle from which both our public keys and secret keys were

randomly sampled according to Key Generation. It can interrogate this oracle up to q

times, in any way it pleases, as long as all the queries are messages in the underlying

message space. Once the attacker has cleared this phase, it enters a forgery phase, in
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which it attempts to output a message.

Lemma 4.2.1. In order to forge a signature, one must find v1, v2, v3 such that ‖ v1 ‖∞≤
2β, ‖ v2 ‖∞≤ 4δ+2, and ‖ v3 ‖∞≤ 2, and obtain Av1 +v2 = v3T1.2

d with v1, v2, v3 
= 0.

Moreover, v2 has at most 2ω coefficients of absolute value greater than 2δ.

Proof. We refer to the analysis in [12]. For a message μ, if the attacker produces a valid

signature (Z, Z2, c), then he must have already queried

H(T1, W1, μ) = c,

where W1 = UseHintq(Z2, AZ − cT1 · 2d, 2δ). Since c was computed here, there exists

(Z′, Z′
2, c) and W′

1 for a message μ′ such that H(T1, W′
1, μ

′) = c = H(T1, W1, μ). We

now have μ = μ′ and W1 = W′
1, therefore it must be that

W1 = UseHintq(Z2, AZ − cT1 · 2d, 2δ),

W1 = UseHintq(Z′
2, AZ′ − cT1 · 2d, 2δ).

Due to rejection sampling technique, it can be assured that Z 
= Z′. Now, we have

‖ AZ − cT1 · 2d − W1, 2δ ‖∞≤ 2δ + 1,

‖ AZ′ − cT1 · 2d − W1, 2δ ‖∞≤ 2δ + 1.

By the triangular inequality, this implies that

A(Z − Z)′ + v = 0

for some v such that ‖ v ‖∞≤ 4δ + 2, where Z − Z′ 
= 0. Thus, from our signing

algorithm, we know that except ω elements, the rest of the elements in Z1 and Z′
1 are
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equal to 0. According to [12], all but ω coefficients of AZ − cT1 · 2d − W1, 2δ and

AZ′ − cT1 · 2d − W1, 2δ are less than δ. As a result, all but 2ω coefficients of v are less

than 2δ.

Our scheme is secure as even after such an attack, the attacker will encounter a very

low probability of producing forgeries. This is because firstly, our hash function, c =

H(T1, W1, μ), is a one-way function. This means that computing an inverse image for

a given image is intractable. Such a hash function prevents forgery since even if it is

possible to generate a valid signature for this hash value, it is impossible to find a docu-

ment with the same hash value. And secondly, to ensure security of our scheme against

forgery, the q-value selected should be sufficiently large, as this makes sure that forgery

becomes near to impossible.

4.2.4 Other Possible Attacks

The main objective of an attacker in our scheme is to determine S and E given T1 and A.

We show two such possible attacks and their consequences below.

1. The attacker performs a statistical analysis of the values T1 and A to figure out

the values of S and E. He can even do an analysis and obtain the pair (Z, c), and

attempt to "average" the Z and acquire S, to achieve this. Another option is to

use the fact that Decomposeq(W, 2δ) = Decomposeq(W − cE, 2δ) in order to

attain some knowledge about E. However, for our scheme, since the distribution

of the values (Z, c) is independent of the secret keys, all attacks of this nature are

unsuccessful.

2. Another possibility is that the attacker is successful in negotiating a signature pair

(Z, c) on message μ. Being in possession of his own function c′ and hoping that

c′ = c, he then proceeds to determine a second message μ′ and attempt to verify

such that

Highbitsq(AZ − cT1, 2δ) = W1 = W′
1 = Highbitsq(AZ′ − c′T1, 2δ).
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This means that the attacker is negotiating with our scheme and computing a sec-

ond pre-image of our hash function. However, due to our collision resistent hash

function, this forgery attempt will also result as unsuccessful.

Nowadays, hackers use computer programs and software that runs automatically to get

the encryption key or password. We suggest that the best approach to counter this attack

is to apply the CAPTCHA Code Use (Completely Automated Public Turing test to tell

Computers and Humans Apart). According to [51], CAPTCHA is a type of challenge

- response test used in computing to determine whether or not the user is human. A

CAPTCHA code is a technique by which we recognize a computer or a human, by mak-

ing some questions or images or numbers, the answer of which is not submitted by the

computer automatically.

4.3 Performance Analysis - Time Complexity

The time complexity is one of the most important measures for cryptographic algorithm

development. The most commonly utilized measure is the big O notation. The algo-

rithms in our scheme heavily involve multiplication, thus will have a running time of

O(n2) as generally described in [36]. The maximum running time over the input param-

eters are usually considered in the worst case. In the literature [13] and [37], lattice-based

cryptosystems are considered to be efficient and feasible. Furthermore, the performance

analysis for the scheme to be carried for concrete parameters.

4.4 Summary

Our proposed signature scheme begins with Algorithm 1. The public keys are (T1, A),

while the secret keys are T, S and E. These keys are matrices sampled from a uniform

distribution and Gaussian distribution. The public key of our scheme is the function

T = AS + E. In Algorithm 2, in order to enhance the security level, T is reduced to T1

and made public. After selecting a vector Y, W = AY is computed, and then hashed with

message μ to determine c. This c value is used to determine the value of the function Z =

Y + cS, whose distribution is made independent of the secret using rejection sampling.
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In Algorithm 3, the signature is verified by computing W1 = HighBitsq(AZ − cT, 2δ)

= UseHintq(H, AZ − cT1 · 2d, 2δ). Furthermore, analysis of the scheme has been

discussed.
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Chapter 5

Conclusion and Further Work

A Lattice-based digital signature scheme for the Post-quantum world has been designed

and presented in this thesis. The algorithms installed in our scheme are secure under

chosen message attacks based on the hardness of lattice problems over lattices. High

priority has been given to ensure a tight security of the secret key. In addition, the public

key has been further reduced into its components, thus also contributing towards the

security. Our scheme has been analyzed and proven to be secure against known attacks.

In this thesis, developments in Lattice-based cryptography are discussed. Due to it’s elu-

siveness, lattice-based digital signature schemes are now being considered for real world

applications, and are leading contenders in contributing towards enhanced information

security.

However, the threat of further attacks must be considered, as lattice based digital signa-

ture schemes become more practical and publicly available. Appropriate counter mea-

sures must be taken to prevent attacks from breaking signature schemes.

Further research will be needed in Lattice-based cryptography to evaluate the crypto-

graphic algorithms employed by signature schemes, and its effect on enhancing security.

Future studies are essential in this area, especially regarding the contribution of parame-

ters used in algorithms, their security analysis and efficiency of the scheme which needs

to be verified.
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